开卷题库
所有考题
计算机类
前端开发
HTML/HTML5
CSS/CSS3
Vue.js
React.js
Node.js
Bootstrap
Javascript
TypeScript
后端开发
Java
Python
PHP
Go
C
C++
C#
移动开发
Android
iOS
React Native
Flutter
运维 & 测试
运维
Linux
软件测试
数据库
MySQL
Redis
MongoDB
Oracle
云计算 & 大数据 & 机器学习
大数据
Hadoop
Spark
HBase
Storm
机器学习
ElasticSearch
Docker
Hive
HDFS
计算机等级考试
计算机四级
算法 & 数学
算法 & 数据结构
协议
前沿技术
区块链
软考
软考初级
软考中级
软考高级
人工智能
深度学习
PMI
PMP
ACP
厂商认证
华为认证
思科认证
红帽认证
微软认证
H3C认证
OCP认证
安全
网络安全
信息安全等级保护
建筑类
一级建造师执业资格
市政公用工程
一建建设工程项目管理
一建建设工程经济
一建机电工程
一建公路工程
一建市政公用工程
一建铁路工程
一建水利水电工程
一建通信与广电
一建民航机场工程
一建矿业工程
一建港口与航道工程
二级建造师
二建建设工程施工管理
二建建设工程法规
二建建筑工程管理与实务
二建公路工程管理与实务
其他
B 站 (bilibili)
bilibili 大会员
心理学
行为心理学
人力资源
四级人力资源
四级理论知识
三级人力资源
三级理论知识
二级人力资源
二级理论知识
一级人力资源
一级理论知识
职业考试
教师资格证
财务会计
会计
中级会计
初级会计
会计电算化
会计电算化(中级)
NIT 财税知识
财税知识基础应用
财税知识综合应用
CPA 注册会计师
财务成本管理
财务报表分析
教师资格证考试
小学教师资格考题
小学综合素质
教育教学知识与能力
小学教育心理学
小学教育学
中学教师资格
中学综合素质
教育知识与能力
初中语文学科
初中数学学科
注册安全工程师
中级注册安全工程师
试卷
讨论区
IT 问答
课程返现
登录
注册
全部试题
机器学习
机器学习中L1正则化和L2正则化的区别是?
1483
次浏览
A、使用L1可以得到稀疏的权值
B、使用L1可以得到平滑的权值
C、使用L2可以得到稀疏的权值
小开
答案解析
L1正则化偏向于稀疏,它会自动进行特征选择,去掉一些没用的特征,也就是将这些特征对应的权重置为0.L2主要功能是为了防止过拟合,当要求参数越小时,说明模型越简单,而模型越简单则,越趋向于平滑,从而防止过拟合。L1正则化/Lasso L1正则化将系数w的l1范数作为惩罚项加到损失函数上,由于正则项非零,这就迫使那些弱的特征所对应的系数变成0。因此L1正则化往往会使学到的模型很稀疏(系数w经常为0),这个特性使得L1正则化成为一种很好的特征选择方法。L2正则化/Ridge regression L2正则化将系数向量的L2范数添加到了损失函数中。由于L2惩罚项中系数是二次方的,这使得L2和L1有着诸多差异,最明显的一点就是,L2正则化会让系数的取值变得平均。对于关联特征,这意味着他们能够获得更相近的对应系数。还是以Y=X1+X2为例,假设X1和X2具有很强的关联,如果用L1正则化,不论学到的模型是Y=X1+X2还是Y=2X1,惩罚都是一样的,都是2alpha。但是对于L2来说,第一个模型的惩罚项是2alpha,但第二个模型的是4*alpha。可以看出,系数之和为常数时,各系数相等时惩罚是最小的,所以才有了L2会让各个系数趋于相同的特点。可以看出,L2正则化对于特征选择来说一种稳定的模型,不像L1正则化那样,系数会因为细微的数据变化而波动。所以L2正则化和L1正则化提供的价值是不同的,L2正则化对于特征理解来说更加有用:表示能力强的特征对应的系数是非零。因此,一句话总结就是:L1会趋向于产生少量的特征,而其他的特征都是0,而L2会选择更多的特征,这些特征都会接近于0。Lasso在特征选择时候非常有用,而Ridge就只是一种规则化而已。来源:@刘炫320,链接:http://blog.csdn.net/column/details/16442.html
旺仔小秃头
挑战成功
使用L1可以得到稀疏的权值
6个月前
mshare
挑战成功
使用L1可以得到稀疏的权值
2年前
chay99
挑战成功
使用L1可以得到稀疏的权值
3年前
dasadan12
挑战成功
使用L1可以得到稀疏的权值
3年前
qukaiyang
挑战成功
使用L1可以得到稀疏的权值
3年前
Yan2009
挑战成功
使用L1可以得到稀疏的权值
3年前
zhuyuan630
挑战成功
使用L1可以得到稀疏的权值
3年前
yssy3737
挑战成功
使用L1可以得到稀疏的权值
4年前
yssy3737
挑战失败
使用L2可以得到稀疏的权值
4年前
yssy3737
挑战失败
使用L1可以得到平滑的权值
4年前
选项 A
选项 B
选项 C
提交答案
相似测试题
位势函数法的积累势函数K(x)的...
隐马尔可夫模型三个基本问题以...
在其他条件不变的前提下,以下...
下列时间序列模型中,哪一个模...
以下说法中错误的是()
你正在使用带有 L1 正则化的 l...
在 k-均值算法中,以下哪个选...
假设你使用 log-loss 函数作为...
下面哪个选项中哪一项属于确定...
两个变量的 Pearson 相关性系...
微信公众号
微信公众号:
geekdaxue