123456784987654321
start with a number
123456784 987654321
^the first place from the right where the left-digit is less than the right
Digit "x" is 4
123456784 987654321
^find the smallest digit larger than 4 to the right
123456785 4 98764321
^place it to the left of 4
123456785 4 12346789
123456785123446789
^sort the digits to the right of 5. Since all of them except
the '4' were already in descending order, all we need to do is
reverse their order, and find the correct place for the '4'
def findnext(ii):
iis=list(map(int,str(ii)))
for i in reversed(range(len(iis))):
if i == 0: return ii
if iis[i] > iis[i-1] :
break
left,right=iis[:i],iis[i:]
for k in reversed(range(len(right))):
if right[k]>left[-1]:
right[k],left[-1]=left[-1],right[k]
break
return int("".join(map(str,(left+sorted(right)))))
local number = 564321;
function split(str)
local t = {};
for i = 1, string.len(str) do
table.insert(t, str.sub(str,i,i));
end
return t;
end
local res = number;
local i = 1;
while number >= res do
local t = split(tostring(res));
if i == 1 then
i = #t;
end
t[i], t[i-1] = t[i-1], t[i];
i = i - 1;
res = tonumber(table.concat(t));
end
print(res);
Sub Main()
Dim Base(0 To 9) As Long
Dim Test(0 To 9) As Long
Dim i As Long
Dim j As Long
Dim k As Long
Dim ctr As Long
Const x As Long = 776914648
Dim y As Long
Dim z As Long
Dim flag As Boolean
' Store the digit count for the original number in the Base vector.
For i = 0 To 9
ctr = 0
For j = 1 To Len(CStr(x))
If Mid$(CStr(x), j, 1) = i Then ctr = ctr + 1
Next j
Base(i) = ctr
Next i
' Start comparing from the next highest number.
y = x + 1
Do
' Store the digit count for the each new number in the Test vector.
flag = False
For i = 0 To 9
ctr = 0
For j = 1 To Len(CStr(y))
If Mid$(CStr(y), j, 1) = i Then ctr = ctr + 1
Next j
Test(i) = ctr
Next i
' Compare the digit counts.
For k = 0 To 9
If Test(k) <> Base(k) Then flag = True
Next k
' If no match, INC and repeat.
If flag = True Then
y = y + 1
Erase Test()
Else
z = y ' Match.
End If
Loop Until z > 0
MsgBox (z), , "Solution"
End Sub
public int findNextBiggestNumber(int input ) {
//take 1358642 as input for example.
//Step 1: split the whole number to a list for individual digital 1358642->[2,4,6,8,5,3,1]
// this step is O(n)
int digitalLevel=input;
List<Integer> orgNumbersList=new ArrayList<Integer>() ;
do {
Integer nInt = new Integer(digitalLevel % 10);
orgNumbersList.add(nInt);
digitalLevel=(int) (digitalLevel/10 ) ;
} while( digitalLevel >0) ;
int len= orgNumbersList.size();
int [] orgNumbers=new int[len] ;
for(int i=0;i<len;i++){
orgNumbers[i ] = orgNumbersList.get(i).intValue();
}
//step 2 find the first digital less than the digital right to it
// this step is O(n)
int firstLessPointer=1;
while(firstLessPointer<len&&(orgNumbers[firstLessPointer]>orgNumbers[ firstLessPointer-1 ])){
firstLessPointer++;
}
if(firstLessPointer==len-1&&orgNumbers[len-1]>=orgNumbers[len-2]){
//all number is in sorted order like 4321, no answer for it, return original
return input;
}
//when step 2 step finished, firstLessPointer pointing to number 5
//step 3 fristLessPointer found, need to find to first number less than it from low digital in the number
//This step is O(n)
int justBiggerPointer= 0 ;
while(justBiggerPointer<firstLessPointer&& orgNumbers[justBiggerPointer]<orgNumbers[firstLessPointer]){
justBiggerPointer++;
}
//when step 3 finished, justBiggerPointer pointing to 6
//step 4 swap the elements of justBiggerPointer and firstLessPointer .
// This is O(1) operation for swap
int tmp= orgNumbers[firstLessPointer] ;
orgNumbers[firstLessPointer]= orgNumbers[justBiggerPointer] ;
orgNumbers[justBiggerPointer]=tmp ;
// when step 4 finished, the list looks like [2,4,5,8,6,3,1] the digital in the list before
// firstLessPointer is already sorted in our previous operation
// we can return result from this list but in a differrent way
int result=0;
int i=0;
int lowPointer=firstLessPointer;
//the following pick number from list from the position just before firstLessPointer, here is 8 -> 5 -> 4 -> 2
//This Operation is O(n)
while(lowPointer>0) {
result+= orgNumbers[--lowPointer]* Math.pow(10,i);
i++;
}
//the following pick number from list from position firstLessPointer
//This Operation is O(n)
while(firstLessPointer<len) {
result+= orgNumbers[firstLessPointer++ ]* Math.pow(10,i);
i++;
}
return result;
}
class NumPermExample
{
// print N! permutation of the characters of the string s (in order)
public static void perm1(String s, ArrayList<String> perm)
{
perm1("", s);
}
private static void perm1(String prefix, String s, ArrayList<String> perm)
{
int N = s.length();
if (N == 0)
{
System.out.println(prefix);
perm.add(prefix);
}
else
{
for (int i = 0; i < N; i++)
perm1(prefix + s.charAt(i), s.substring(0, i)
+ s.substring(i+1, N));
}
}
// print N! permutation of the elements of array a (not in order)
public static void perm2(String s, ArrayList<String> perm)
{
int N = s.length();
char[] a = new char[N];
for (int i = 0; i < N; i++)
a[i] = s.charAt(i);
perm2(a, N);
}
private static void perm2(char[] a, int n, ArrayList<String> perm)
{
if (n == 1)
{
System.out.println(a);
perm.add(new String(a));
return;
}
for (int i = 0; i < n; i++)
{
swap(a, i, n-1);
perm2(a, n-1);
swap(a, i, n-1);
}
}
// swap the characters at indices i and j
private static void swap(char[] a, int i, int j)
{
char c;
c = a[i]; a[i] = a[j]; a[j] = c;
}
// next higher permutation
public static int nextPermutation (int number)
{
ArrayList<String> perm = new ArrayList<String>();
String cur = ""+number;
int nextPerm = 0;
perm1(cur, perm);
for (String s : perm)
{
if (Integer.parseInt(s) > number
&& (nextPerm == 0 ||
Integer.parseInt(s) < nextPerm))
{
nextPerm = Integer.parseInt(s);
}
}
return nextPerm;
}
}
测试:
public static void main(String[] args)
{
int a = 38276;
int b = NumPermExample.nextPermutation(a);
System.out.println("a: "+a+", b: "+b);
}
def PermutationStep(num):
if sorted(list(str(num)), reverse=True) == list(str(num)):
return -1
ls = list(str(num))
n = 0
inx = 0
for ind, i in enumerate(ls[::-1]):
if i < n:
n = i
inx = -(ind + 1)
break
n = i
ls[inx], ls[inx + 1] = ls[inx + 1], ls[inx]
nl = ls[inx::-1][::-1]
ln = sorted(ls[inx+1:])
return ''.join(nl) + ''.join(ln)
print PermutationStep(23514)
public static void findNext(long number){
/* convert long to string builder */
StringBuilder s = new StringBuilder();
s.append(number);
int N = s.length();
int index=-1,pivot=-1;
/* from tens position find the number (called pivot) less than the number in right */
for(int i=N-2;i>=0;i--){
int a = s.charAt(i)-'0';
int b = s.charAt(i+1)-'0';
if(a<b){
pivot = a;
index =i;
break;
}
}
/* if no such pivot then no solution */
if(pivot==-1) System.out.println(" No such number ")
else{
/* find the minimum highest number to the right higher than the pivot */
int nextHighest=Integer.MAX_VALUE, swapIndex=-1;
for(int i=index+1;i<N;i++){
int a = s.charAt(i)-'0';
if(a>pivot && a<nextHighest){
nextHighest = a;
swapIndex=i;
}
}
/* swap the pivot and next highest number */
s.replace(index,index+1,""+nextHighest);
s.replace(swapIndex,swapIndex+1,""+pivot);
/* sort everything to right of pivot and replace the sorted answer to right of pivot */
char [] sort = s.substring(index+1).toCharArray();
Arrays.sort(sort);
s.replace(index+1,N,String.copyValueOf(sort));
System.out.println("next highest number is "+s);
}
}
def foo num
num = num.to_s.chars.map(&:to_i)
return num.join.to_i if num.size < 2
for left in (num.size-2).downto(0) do
for right in (num.size-1).downto(left+1) do
if num[right]>num[left]
num[left],num[right] = num[right],num[left]
return (num[0..left] + num[left+1..num.size-1].sort).join.to_i
end
end
end
return num.join.to_i
end
p foo 38276
#will print: 38627
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import org.junit.Test;
import static org.junit.Assert.assertEquals;
public class NextHigherSameDigits {
public long next(final long num) {
final char[] chars = String.valueOf(num).toCharArray();
final int[] digits = new int[chars.length];
for (int i = 0; i < chars.length; i++) {
digits[i] = Character.getNumericValue(chars[i]);
}
final Map<Integer, Integer> indexToIndexOfNextSmallerLeft = new HashMap<>();
indexToIndexOfNextSmallerLeft.put(1, digits[1] > digits[0] ? 0 : null);
for (int i = 2; i < digits.length; i++) {
final int left = digits[i - 1];
final int current = digits[i];
Integer indexOfNextSmallerLeft = null;
if (current > left) {
indexOfNextSmallerLeft = i - 1;
} else {
final Integer indexOfnextSmallerLeftOfLeft = indexToIndexOfNextSmallerLeft.get(i - 1);
final Integer nextSmallerLeftOfLeft = indexOfnextSmallerLeftOfLeft == null ? null :
digits[indexOfnextSmallerLeftOfLeft];
if (nextSmallerLeftOfLeft != null && current > nextSmallerLeftOfLeft) {
indexOfNextSmallerLeft = indexOfnextSmallerLeftOfLeft;
} else {
indexOfNextSmallerLeft = null;
}
}
indexToIndexOfNextSmallerLeft.put(i, indexOfNextSmallerLeft);
}
Integer maxOfindexOfNextSmallerLeft = null;
Integer indexOfMinToSwapWithNextSmallerLeft = null;
for (int i = digits.length - 1; i >= 1; i--) {
final Integer indexOfNextSmallerLeft = indexToIndexOfNextSmallerLeft.get(i);
if (maxOfindexOfNextSmallerLeft == null ||
(indexOfNextSmallerLeft != null && indexOfNextSmallerLeft > maxOfindexOfNextSmallerLeft)) {
maxOfindexOfNextSmallerLeft = indexOfNextSmallerLeft;
if (maxOfindexOfNextSmallerLeft != null && (indexOfMinToSwapWithNextSmallerLeft == null ||
digits[i] < digits[indexOfMinToSwapWithNextSmallerLeft])) {
indexOfMinToSwapWithNextSmallerLeft = i;
}
}
}
if (maxOfindexOfNextSmallerLeft == null) {
return -1;
} else {
swap(digits, indexOfMinToSwapWithNextSmallerLeft, maxOfindexOfNextSmallerLeft);
reverseRemainingOfArray(digits, maxOfindexOfNextSmallerLeft + 1);
return backToLong(digits);
}
}
private void reverseRemainingOfArray(final int[] digits, final int startIndex) {
final int[] tail = Arrays.copyOfRange(digits, startIndex, digits.length);
for (int i = tail.length - 1; i >= 0; i--) {
digits[(digits.length - 1) - i] = tail[i];
}
}
private void swap(final int[] digits, final int currentIndex, final int indexOfNextSmallerLeft) {
int temp = digits[currentIndex];
digits[currentIndex] = digits[indexOfNextSmallerLeft];
digits[indexOfNextSmallerLeft] = temp;
}
private long backToLong(int[] digits) {
StringBuilder sb = new StringBuilder();
for (long i : digits) {
sb.append(String.valueOf(i));
}
return Long.parseLong(sb.toString());
}
@Test
public void test() {
final long input1 = 34722641;
final long expected1 = 34724126;
final long output1 = new NextHigherSameDigits().next(input1);
assertEquals(expected1, output1);
final long input2 = 38276;
final long expected2 = 38627;
final long output2 = new NextHigherSameDigits().next(input2);
assertEquals(expected2, output2);
final long input3 = 54321;
final long expected3 = -1;
final long output3 = new NextHigherSameDigits().next(input3);
assertEquals(expected3, output3);
final long input4 = 123456784987654321L;
final long expected4 = 123456785123446789L;
final long output4 = new NextHigherSameDigits().next(input4);
assertEquals(expected4, output4);
final long input5 = 9999;
final long expected5 = -1;
final long output5 = new NextHigherSameDigits().next(input5);
assertEquals(expected5, output5);
}
}
int getNextNumber(int input)
{
int flipPosition=0;
int trailingZeros=0;
int trailingOnes=0;
int copy = input;
//count trailing zeros
while(copy != 0 && (copy&1) == 0 )
{
++trailingZeros;
//test next bit
copy = copy >> 1;
}
//count trailing ones
while(copy != 0 && (copy&1) == 1 )
{
++trailingOnes;
//test next bit
copy = copy >> 1;
}
//if we have no 1's (i.e input is 0) we cannot form another pattern with
//the same number of 1's which will increment the input, or if we have leading consecutive
//ones followed by consecutive 0's up to the maximum bit size of a int
//we cannot increase the input whilst preserving the original no of 0's and
//1's in the bit pattern
if(trailingZeros + trailingOnes == 0 || trailingZeros + trailingOnes == 31)
return -1;
//flip first 0 followed by a 1 found from the right of the bit pattern
flipPosition = trailingZeros + trailingOnes+1;
input |= 1<<(trailingZeros+trailingOnes);
//clear fields to the right of the flip position
int mask = ~0 << (trailingZeros+trailingOnes);
input &= mask;
//insert a bit pattern to the right of the flip position that will contain
//one less 1 to compensate for the bit we switched from 0 to 1
int insert = flipPosition-1;
input |= insert;
return input;
}
/*
Algorithm applied
I) Traverse the given number from rightmost digit, keep traversing till you find a digit which is smaller than the previously traversed digit. For example, if the input number is “534976”, we stop at 4 because 4 is smaller than next digit 9. If we do not find such a digit, then output is “Not Possible”.
II) Now search the right side of above found digit ‘d’ for the smallest digit greater than ‘d’. For “534976″, the right side of 4 contains “976”. The smallest digit greater than 4 is 6.
III) Swap the above found two digits, we get 536974 in above example.
IV) Now sort all digits from position next to ‘d’ to the end of number. The number that we get after sorting is the output. For above example, we sort digits in bold 536974. We get “536479” which is the next greater number for input 534976.
*/
function findNext(arr)
{
let i;
//breaking down a digit into arrays of string and then converting back that array to number array
let arr1=arr.toString().split('').map(Number) ;
//started to loop from the end of array
for(i=arr1.length;i>0;i--)
{
//looking for if the current number is greater than the number next to it
if(arr1[i]>arr1[i-1])
{// if yes then we break the loop it so that we can swap and sort
break;}
}
if(i==0)
{console.log("Not possible");}
else
{
//saving that big number and smaller number to the left of it
let smlNum =arr1[i-1];
let bigNum =i;
/*now looping again and checking if we have any other greater number, if we have one AFTER big number and smaller number to the right.
A greater number that is of course greater than that smaller number but smaller than the first number we found.
Why are doing this? Because that is an algorithm to find next higher number with same digits.
*/
for(let j=i+1;j<arr1.length;j++)
{//What if there are no digits afters those found numbers then of course loop will not be initiated otherwise...
if(arr1[j]> smlNum && arr1[j]<arr1[i])
{// we assign that other found number here and replace it with the one we found before
bigNum=j;
}
} //now we are doing swapping of places the small num and big number , 3rd part of alogorithm
arr1[i-1]=arr1[bigNum];
arr1[bigNum]=smlNum;
//returning array
//too many functions applied sounds complicated right but no, here is the trick
//return arr first then apply each function one by one to see output and then further another func to that output to match your needs
// so here after swapping , 4th part of alogorithm is to sort the array right after the 1st small num we found
// to do that first we simple take part of array, we splice it and then we apply sort fucntion, then check output (to check outputs, pls use chrome dev console)
//and then simply the rest concat and join to main one digit again.
return arr1.concat((arr1.splice(i,arr1.length)).sort(function(a, b){return a-b})).join('');
// Sorry to make it too long but its fun explaining things in much easier ways as much as possible!!
}
}
findNext(1234);
public void findNext(int[] nums) {
int i = nums.length - 1;
// nums[i - 1] will be the first non increasing number
while (i > 0 && nums[i] <= nums[i - 1]) {
i--;
}
if (i == 0) {
System.out.println("it has been the greatest already");
} else {
// Find the smallest digit in the second sequence that is larger than it:
int j = nums.length - 1;
while (j >= 0 && nums[j] < nums[i - 1]) {
j--;
}
swap(nums, i - 1, j);
Arrays.sort(nums, i, nums.length);
System.out.println(Arrays.toString(nums));
}
}
public void swap(int[] nums, int i, int j) {
int tmp = nums[i];
nums[i] = nums[j];
nums[j] = tmp;
}
def next_bigger(num)
char_array = num.to_s.split('')
return -1 if char_array.uniq.size == 1
arr, target_idx, target_char = [], nil, nil
# get first left-digit less than the right from right side
(char_array.count - 1).times do |i|
arr.unshift(char_array[-(i+1)])
if char_array[-(i+2)] < char_array[-(i+1)]
target_idx = char_array.count - (i + 2)
target_char = char_array[-(i+2)]
arr.unshift(char_array[-(i+2)])
break
end
end
return -1 unless target_idx
# first smallest digit larger than target_char to the right
((target_char.to_i + 1)..9).to_a.each do |ch|
if arr.index(ch.to_s)
flip_char = arr.delete_at(arr.index(ch.to_s))
# sort the digits to the right of flip_char
arr.sort!
# place flip_char to the left of target_char
arr.unshift(flip_char)
break
end
end
(char_array[0...target_idx] + arr).join().to_i
end