I have a little project that works beautifully with SWIG. In particular, some of my functions return std::vector
s, which get translated to tuples in Python. Now, I do a lot of numerics, so I just have SWIG convert these to numpy arrays after they're returned from the c++ code. To do this, I use something like the following in SWIG.
%feature("pythonappend") My::Cool::Namespace::Data() const %{ if isinstance(val, tuple) : val = numpy.array(val) %}
(Actually, there are several functions named Data, some of which return floats, which is why I check that val
is actually a tuple.) This works just beautifully.
But, I'd also like to use the -builtin
flag that's now available. Calls to these Data functions are rare and mostly interactive, so their slowness is not a problem, but there are other slow loops that speed up significantly with the builtin option.
The problem is that when I use that flag, the pythonappend feature is silently ignored. Now, Data just returns a tuple again. Is there any way I could still return numpy arrays? I tried using typemaps, but it turned into a giant mess.
Borealid has answered the question very nicely. Just for completeness, I include a couple related but subtly different typemaps that I need because I return by const reference and I use vectors of vectors (don't start!). These are different enough that I wouldn't want anyone else stumbling around trying to figure out the minor differences.
%typemap(out) std::vector<int>& {
npy_intp result_size = $1->size();
npy_intp dims[1] = { result_size };
PyArrayObject* npy_arr = (PyArrayObject*)PyArray_SimpleNew(1, dims, NPY_INT);
int* dat = (int*) PyArray_DATA(npy_arr);
for (size_t i = 0; i < result_size; ++i) { dat[i] = (*$1)[i]; }
$result = PyArray_Return(npy_arr);
}
%typemap(out) std::vector<std::vector<int> >& {
npy_intp result_size = $1->size();
npy_intp result_size2 = (result_size>0 ? (*$1)[0].size() : 0);
npy_intp dims[2] = { result_size, result_size2 };
PyArrayObject* npy_arr = (PyArrayObject*)PyArray_SimpleNew(2, dims, NPY_INT);
int* dat = (int*) PyArray_DATA(npy_arr);
for (size_t i = 0; i < result_size; ++i) { for (size_t j = 0; j < result_size2; ++j) { dat[i*result_size2+j] = (*$1)[i][j]; } }
$result = PyArray_Return(npy_arr);
}
Though not quite what I was looking for, similar problems may also be solved using @MONK's approach (explained here).