“unpacking"调用匹配函数指针的元组

我试图在std::tuple中存储不同数量的值,这些值稍后将用作调用匹配所存储类型的函数指针的参数。

我创建了一个简化的例子来展示我正在努力解决的问题:

#include <iostream>
#include <tuple>


void f(int a, double b, void* c) {
std::cout << a << ":" << b << ":" << c << std::endl;
}


template <typename ...Args>
struct save_it_for_later {
std::tuple<Args...> params;
void (*func)(Args...);


void delayed_dispatch() {
// How can I "unpack" params to call func?
func(std::get<0>(params), std::get<1>(params), std::get<2>(params));
// But I *really* don't want to write 20 versions of dispatch so I'd rather
// write something like:
func(params...); // Not legal
}
};


int main() {
int a=666;
double b = -1.234;
void *c = NULL;


save_it_for_later<int,double,void*> saved = {
std::tuple<int,double,void*>(a,b,c), f};
saved.delayed_dispatch();
}

通常,对于涉及std::tuple或可变模板的问题,我会编写另一个类似template <typename Head, typename ...Tail>的模板来逐个递归地计算所有类型,但我不知道如何调度函数调用。

这样做的真正动机有些复杂,它主要只是一个学习练习。您可以假设我是通过契约从另一个接口传递元组的,因此不能更改,但希望将其解压缩到函数调用中是我的愿望。这就排除了使用std::bind作为规避潜在问题的廉价方法。

使用std::tuple分派调用的干净方法是什么,或者实现存储/转发一些值和函数指针直到任意未来点的相同净结果的替代更好的方法是什么?

94006 次浏览

实现这一点有点复杂(尽管这是可能的)。我建议你使用一个已经实现了这一点的库,即提振。融合 (调用函数)。作为奖励,Boost Fusion也可以与c++ 03编译器一起工作。

您需要构建一个包含数字的参数包并解压缩它们

template<int ...>
struct seq { };


template<int N, int ...S>
struct gens : gens<N-1, N-1, S...> { };


template<int ...S>
struct gens<0, S...> {
typedef seq<S...> type;
};




// ...
void delayed_dispatch() {
callFunc(typename gens<sizeof...(Args)>::type());
}


template<int ...S>
void callFunc(seq<S...>) {
func(std::get<S>(params) ...);
}
// ...

在给出答案的基础上再思考一下这个问题,我发现了另一种解决同样问题的方法:

template <int N, int M, typename D>
struct call_or_recurse;


template <typename ...Types>
struct dispatcher {
template <typename F, typename ...Args>
static void impl(F f, const std::tuple<Types...>& params, Args... args) {
call_or_recurse<sizeof...(Args), sizeof...(Types), dispatcher<Types...> >::call(f, params, args...);
}
};


template <int N, int M, typename D>
struct call_or_recurse {
// recurse again
template <typename F, typename T, typename ...Args>
static void call(F f, const T& t, Args... args) {
D::template impl(f, t, std::get<M-(N+1)>(t), args...);
}
};


template <int N, typename D>
struct call_or_recurse<N,N,D> {
// do the call
template <typename F, typename T, typename ...Args>
static void call(F f, const T&, Args... args) {
f(args...);
}
};

这需要将delayed_dispatch()的实现更改为:

  void delayed_dispatch() {
dispatcher<Args...>::impl(func, params);
}

这是通过递归地将std::tuple转换为自己的参数包来实现的。call_or_recurse需要作为一个专门化来终止使用实际调用的递归,实际调用只是解包已完成的参数包。

我不确定这是否是一个“更好的”解决方案,但这是另一种思考和解决问题的方式。


作为另一个替代解决方案,你可以使用enable_if,形成一个可以说比我之前的解决方案更简单的解决方案:

#include <iostream>
#include <functional>
#include <tuple>


void f(int a, double b, void* c) {
std::cout << a << ":" << b << ":" << c << std::endl;
}


template <typename ...Args>
struct save_it_for_later {
std::tuple<Args...> params;
void (*func)(Args...);


template <typename ...Actual>
typename std::enable_if<sizeof...(Actual) != sizeof...(Args)>::type
delayed_dispatch(Actual&& ...a) {
delayed_dispatch(std::forward<Actual>(a)..., std::get<sizeof...(Actual)>(params));
}


void delayed_dispatch(Args ...args) {
func(args...);
}
};


int main() {
int a=666;
double b = -1.234;
void *c = NULL;


save_it_for_later<int,double,void*> saved = {
std::tuple<int,double,void*>(a,b,c), f};
saved.delayed_dispatch();
}

第一个重载只是从元组中再取一个参数,并将其放入参数包中。第二个重载接受一个匹配的参数包,然后进行真正的调用,只有在第二个重载可行的情况下才禁用第一个重载。

这是一个完整的可编译版本的约翰的解决方案林地的问题,希望它可能对某人有用。这是在Debian上用g++ 4.7的快照进行测试的。

###################
johannes.cc
###################
#include <tuple>
#include <iostream>
using std::cout;
using std::endl;


template<int ...> struct seq {};


template<int N, int ...S> struct gens : gens<N-1, N-1, S...> {};


template<int ...S> struct gens<0, S...>{ typedef seq<S...> type; };


double foo(int x, float y, double z)
{
return x + y + z;
}


template <typename ...Args>
struct save_it_for_later
{
std::tuple<Args...> params;
double (*func)(Args...);


double delayed_dispatch()
{
return callFunc(typename gens<sizeof...(Args)>::type());
}


template<int ...S>
double callFunc(seq<S...>)
{
return func(std::get<S>(params) ...);
}
};


#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#pragma GCC diagnostic ignored "-Wunused-variable"
#pragma GCC diagnostic ignored "-Wunused-but-set-variable"
int main(void)
{
gens<10> g;
gens<10>::type s;
std::tuple<int, float, double> t = std::make_tuple(1, 1.2, 5);
save_it_for_later<int,float, double> saved = {t, foo};
cout << saved.delayed_dispatch() << endl;
}
#pragma GCC diagnostic pop

可以使用下面的SConstruct文件

#####################
SConstruct
#####################
#!/usr/bin/python


env = Environment(CXX="g++-4.7", CXXFLAGS="-Wall -Werror -g -O3 -std=c++11")
env.Program(target="johannes", source=["johannes.cc"])

在我的机器上,这给出了

g++-4.7 -o johannes.o -c -Wall -Werror -g -O3 -std=c++11 johannes.cc
g++-4.7 -o johannes johannes.o

这是一个c++ 14的解决方案。

template <typename ...Args>
struct save_it_for_later
{
std::tuple<Args...> params;
void (*func)(Args...);


template<std::size_t ...I>
void call_func(std::index_sequence<I...>)
{ func(std::get<I>(params)...); }
void delayed_dispatch()
{ call_func(std::index_sequence_for<Args...>{}); }
};

这仍然需要一个辅助函数(call_func)。由于这是一个常见的习惯用法,也许标准应该直接支持它作为std::call和可能的实现

// helper class
template<typename R, template<typename...> class Params, typename... Args, std::size_t... I>
R call_helper(std::function<R(Args...)> const&func, Params<Args...> const&params, std::index_sequence<I...>)
{ return func(std::get<I>(params)...); }


// "return func(params...)"
template<typename R, template<typename...> class Params, typename... Args>
R call(std::function<R(Args...)> const&func, Params<Args...> const&params)
{ return call_helper(func,params,std::index_sequence_for<Args...>{}); }

然后我们的延迟调度就变成了

template <typename ...Args>
struct save_it_for_later
{
std::tuple<Args...> params;
std::function<void(Args...)> func;
void delayed_dispatch()
{ std::call(func,params); }
};

Johannes使用c++ 14 std::index_sequence(和函数返回类型作为模板参数RetT)的解决方案的变化:

template <typename RetT, typename ...Args>
struct save_it_for_later
{
RetT (*func)(Args...);
std::tuple<Args...> params;


save_it_for_later(RetT (*f)(Args...), std::tuple<Args...> par) : func { f }, params { par } {}


RetT delayed_dispatch()
{
return callFunc(std::index_sequence_for<Args...>{});
}


template<std::size_t... Is>
RetT callFunc(std::index_sequence<Is...>)
{
return func(std::get<Is>(params) ...);
}
};


double foo(int x, float y, double z)
{
return x + y + z;
}


int testTuple(void)
{
std::tuple<int, float, double> t = std::make_tuple(1, 1.2, 5);
save_it_for_later<double, int, float, double> saved (&foo, t);
cout << saved.delayed_dispatch() << endl;
return 0;
}

c++ 17的解决方案是简单地使用std::apply:

auto f = [](int a, double b, std::string c) { std::cout<<a<<" "<<b<<" "<<c<< std::endl; };
auto params = std::make_tuple(1,2.0,"Hello");
std::apply(f, params);

只是觉得应该在这个帖子的回答中声明一次(在它已经出现在其中一个评论中之后)。


c++ 14的基本解决方案在这个线程中仍然缺失。编辑:不,这实际上是沃尔特的回答。

这个函数是:

void f(int a, double b, void* c)
{
std::cout << a << ":" << b << ":" << c << std::endl;
}

用下面的代码片段调用它:

template<typename Function, typename Tuple, size_t ... I>
auto call(Function f, Tuple t, std::index_sequence<I ...>)
{
return f(std::get<I>(t) ...);
}


template<typename Function, typename Tuple>
auto call(Function f, Tuple t)
{
static constexpr auto size = std::tuple_size<Tuple>::value;
return call(f, t, std::make_index_sequence<size>{});
}

例子:

int main()
{
std::tuple<int, double, int*> t;
//or std::array<int, 3> t;
//or std::pair<int, double> t;
call(f, t);
}

DEMO

解决方案。首先,一些实用工具样板:

template<std::size_t...Is>
auto index_over(std::index_sequence<Is...>){
return [](auto&&f)->decltype(auto){
return decltype(f)(f)( std::integral_constant<std::size_t, Is>{}... );
};
}
template<std::size_t N>
auto index_upto(std::integral_constant<std::size_t, N> ={}){
return index_over( std::make_index_sequence<N>{} );
}

这允许您使用一系列编译时整数调用lambda。

void delayed_dispatch() {
auto indexer = index_upto<sizeof...(Args)>();
indexer([&](auto...Is){
func(std::get<Is>(params)...);
});
}

做完了。

index_uptoindex_over可以让你使用参数包,而不必生成新的外部重载。

当然,在中你只需要

void delayed_dispatch() {
std::apply( func, params );
}

现在,如果我们喜欢这样,在中我们可以写:

namespace notstd {
template<class T>
constexpr auto tuple_size_v = std::tuple_size<T>::value;
template<class F, class Tuple>
decltype(auto) apply( F&& f, Tuple&& tup ) {
auto indexer = index_upto<
tuple_size_v<std::remove_reference_t<Tuple>>
>();
return indexer(
[&](auto...Is)->decltype(auto) {
return std::forward<F>(f)(
std::get<Is>(std::forward<Tuple>(tup))...
);
}
);
}
}

并准备好更简洁的语法。

void delayed_dispatch() {
notstd::apply( func, params );
}

只要在编译器升级时将notstd替换为std, bob就是你的叔叔。

已经提供了很多答案,但我发现它们太复杂了,不太自然。我用了另一种方法,没有使用sizeof或计数器。 我使用自己的简单结构(ParameterPack)来访问参数的尾部,而不是元组。然后,我将结构中的所有参数附加到函数参数中,最后,当没有更多参数需要解压缩时,我运行函数。 这里是c++ 11的代码,我同意比其他答案的代码更多,但我发现它更容易理解
template <class ...Args>
struct PackParameters;


template <>
struct PackParameters <>
{
PackParameters() = default;
};


template <class T, class ...Args>
struct PackParameters <T, Args...>
{
PackParameters ( T firstElem, Args... args ) : value ( firstElem ),
rest ( args... ) {}


T value;
PackParameters<Args...> rest;
};


template <class ...Args>
struct RunFunction;


template <class T, class ...Args>
struct RunFunction<T, Args...>
{
template <class Function>
static void Run ( Function f, const PackParameters<T, Args...>& args );


template <class Function, class... AccumulatedArgs>
static void RunChild (
Function f,
const PackParameters<T, Args...>& remainingParams,
AccumulatedArgs... args
);
};


template <class T, class ...Args>
template <class Function>
void RunFunction<T, Args...>::Run (
Function f,
const PackParameters<T, Args...>& remainingParams
)
{
RunFunction<Args...>::template RunChild ( f, remainingParams.rest,
remainingParams.value );
}


template <class T, class ...Args>
template<class Function, class ...AccumulatedArgs>
void RunFunction<T, Args...>::RunChild ( Function f,
const PackParameters<T, Args...>& remainingParams,
AccumulatedArgs... args )
{
RunFunction<Args...>:: template RunChild ( f, remainingParams.rest,
args..., remainingParams.value );
}




template <>
struct RunFunction<>
{
template <class Function, class... AccumulatedArgs>
static void RunChild ( Function f, PackParameters<>, AccumulatedArgs... args )
{
f ( args... );
}


template <class Function>
static void Run ( Function f, PackParameters<> )
{
f ();
}
};


struct Toto
{
std::string k = "I am toto";
};


void f ( int i, Toto t, float b, std::string introMessage )
{
float res = i * b;


std::cerr << introMessage << " " << res << std::endl;
std::cerr << "Toto " << t.k << std::endl;
}


int main(){
Toto t;
PackParameters<int, Toto, float, std::string> pack ( 3, t, 4.0, " 3 * 4 =" );


RunFunction<int, Toto, float, std::string>::Run ( f, pack );
return 0;
}