import matplotlib.pyplot as plt
from itertools import cycle
lines = ["-","--","-.",":"]
linecycler = cycle(lines)
plt.figure()
for i in range(10):
x = range(i,i+10)
plt.plot(range(10),x,next(linecycler))
plt.show()
Result:
Edit for newer version (v2.22)
import matplotlib.pyplot as plt
from cycler import cycler
#
plt.figure()
for i in range(5):
x = range(i,i+5)
linestyle_cycler = cycler('linestyle',['-','--',':','-.'])
plt.rc('axes', prop_cycle=linestyle_cycler)
plt.plot(range(5),x)
plt.legend(['first','second','third','fourth','fifth'], loc='upper left', fancybox=True, shadow=True)
plt.show()
import matplotlib.pyplot as plt
import numpy as np
#set linestyles (for-loop method)
colors=('k','y','m','c','b','g','r','#aaaaaa')
linestyles=('-','--','-.',':')
styles=[(color,linestyle) for linestyle in linestyles for color in colors]
#-- sample data
numLines=30
dataXaxis=np.arange(0,10)
dataYaxis=dataXaxis+np.array([np.arange(numLines)]).T
plt.figure(1)
#-----------
# -- array oriented method but I cannot set the line color and styles
# -- without changing Matplotlib code
plt.plot(datax[:,np.newaxis],datay.T)
plt.title('Default linestyles - array oriented programming')
#-----------
#-----------
# -- 'for loop' based approach to enable colors and linestyles to be specified
plt.figure(2)
for num in range(datay.sh![enter image description here][1]ape[0]):
plt.plot(datax,datay[num,:],color=styles[num][0],ls=styles[num][1])
plt.title('User defined linestyles using for-loop programming')
#-----------
plt.show()
I usually use a combination of basic colors and linestyles to represent different data sets. Suppose we have 16 data sets, each four data sets belonging to some group (having some property in common), then it is easy to visualize when we represent each group with a common color but its members with different line styles.
import numpy as np
import matplotlib.pyplot as plt
models=['00','01', '02', '03', '04', '05', '06', '07', '08', '09', '10',\
'11', '12', '13', '14', '15', '16']
fig = plt.figure()
ax = fig.add_subplot(111)
x = np.linspace(-1,1,100)
y = np.sin(x)
clrs_list=['k','b','g','r'] # list of basic colors
styl_list=['-','--','-.',':'] # list of basic linestyles
for i in range(0,16):
clrr=clrs_list[i // 4]
styl=styl_list[i % 4]
modl=models[i+1]
frac=(i+1)/10.0
ax.plot(x,y+frac,label=modl,color=clrr,ls=styl)
plt.legend()
plt.show()