是否有关于如何编写新容器的准则,这些新容器的行为会像任何 STL容器一样?
STL
您将需要阅读 C + + 标准关于容器和 C + + 标准对容器实现的要求的章节。
C + + 03标准的相关章节是:
第23.1节货柜规定
C + + 11标准中的相关章节是:
第23.2节货柜规定
C + + 11标准的最终草案是免费提供的 译自: 美国《科学》杂志网站(http://www.open-std.org/jtc1/sc22/wg21/docs/paper/2011/n3242.pdf)原著: http://www.open-std.org/jtc1/sc22/wg21/docs/paper/2011/n3242.pdf。
您也可以阅读一些优秀的书籍,这些书籍将帮助您从容器用户的角度理解需求。两本很容易让我印象深刻的好书是:
Scott Meyers & 有效的 STL C++标准程式库: 尼古拉 · 约瑟蒂尔斯(Nicolai Josutils)
下面是我从23.2.1拼凑起来的一个序列伪容器。注意,iterator_category应该是 std::input_iterator_tag、 std::output_iterator_tag、 std::forward_iterator_tag、 std::bidirectional_iterator_tag、 std::random_access_iterator_tag中的一个。还要注意的是,下面的 严格来说比要求更严格,但这是想法。注意,绝大多数的“标准”函数在技术上是可选的,因为迭代器非常棒。
iterator_category
std::input_iterator_tag
std::output_iterator_tag
std::forward_iterator_tag
std::bidirectional_iterator_tag
std::random_access_iterator_tag
template <class T, class A = std::allocator<T> > class X { public: typedef A allocator_type; typedef typename A::value_type value_type; typedef typename A::reference reference; typedef typename A::const_reference const_reference; typedef typename A::difference_type difference_type; typedef typename A::size_type size_type; class iterator { public: typedef typename A::difference_type difference_type; typedef typename A::value_type value_type; typedef typename A::reference reference; typedef typename A::pointer pointer; typedef std::random_access_iterator_tag iterator_category; //or another tag iterator(); iterator(const iterator&); ~iterator(); iterator& operator=(const iterator&); bool operator==(const iterator&) const; bool operator!=(const iterator&) const; bool operator<(const iterator&) const; //optional bool operator>(const iterator&) const; //optional bool operator<=(const iterator&) const; //optional bool operator>=(const iterator&) const; //optional iterator& operator++(); iterator operator++(int); //optional iterator& operator--(); //optional iterator operator--(int); //optional iterator& operator+=(size_type); //optional iterator operator+(size_type) const; //optional friend iterator operator+(size_type, const iterator&); //optional iterator& operator-=(size_type); //optional iterator operator-(size_type) const; //optional difference_type operator-(iterator) const; //optional reference operator*() const; pointer operator->() const; reference operator[](size_type) const; //optional }; class const_iterator { public: typedef typename A::difference_type difference_type; typedef typename A::value_type value_type; typedef typename const A::reference reference; typedef typename const A::pointer pointer; typedef std::random_access_iterator_tag iterator_category; //or another tag const_iterator (); const_iterator (const const_iterator&); const_iterator (const iterator&); ~const_iterator(); const_iterator& operator=(const const_iterator&); bool operator==(const const_iterator&) const; bool operator!=(const const_iterator&) const; bool operator<(const const_iterator&) const; //optional bool operator>(const const_iterator&) const; //optional bool operator<=(const const_iterator&) const; //optional bool operator>=(const const_iterator&) const; //optional const_iterator& operator++(); const_iterator operator++(int); //optional const_iterator& operator--(); //optional const_iterator operator--(int); //optional const_iterator& operator+=(size_type); //optional const_iterator operator+(size_type) const; //optional friend const_iterator operator+(size_type, const const_iterator&); //optional const_iterator& operator-=(size_type); //optional const_iterator operator-(size_type) const; //optional difference_type operator-(const_iterator) const; //optional reference operator*() const; pointer operator->() const; reference operator[](size_type) const; //optional }; typedef std::reverse_iterator<iterator> reverse_iterator; //optional typedef std::reverse_iterator<const_iterator> const_reverse_iterator; //optional X(); X(const X&); ~X(); X& operator=(const X&); bool operator==(const X&) const; bool operator!=(const X&) const; bool operator<(const X&) const; //optional bool operator>(const X&) const; //optional bool operator<=(const X&) const; //optional bool operator>=(const X&) const; //optional iterator begin(); const_iterator begin() const; const_iterator cbegin() const; iterator end(); const_iterator end() const; const_iterator cend() const; reverse_iterator rbegin(); //optional const_reverse_iterator rbegin() const; //optional const_reverse_iterator crbegin() const; //optional reverse_iterator rend(); //optional const_reverse_iterator rend() const; //optional const_reverse_iterator crend() const; //optional reference front(); //optional const_reference front() const; //optional reference back(); //optional const_reference back() const; //optional template<class ...Args> void emplace_front(Args&&...); //optional template<class ...Args> void emplace_back(Args&&...); //optional void push_front(const T&); //optional void push_front(T&&); //optional void push_back(const T&); //optional void push_back(T&&); //optional void pop_front(); //optional void pop_back(); //optional reference operator[](size_type); //optional const_reference operator[](size_type) const; //optional reference at(size_type); //optional const_reference at(size_type) const; //optional template<class ...Args> iterator emplace(const_iterator, Args&&...); //optional iterator insert(const_iterator, const T&); //optional iterator insert(const_iterator, T&&); //optional iterator insert(const_iterator, size_type, T&); //optional template<class iter> iterator insert(const_iterator, iter, iter); //optional iterator insert(const_iterator, std::initializer_list<T>); //optional iterator erase(const_iterator); //optional iterator erase(const_iterator, const_iterator); //optional void clear(); //optional template<class iter> void assign(iter, iter); //optional void assign(std::initializer_list<T>); //optional void assign(size_type, const T&); //optional void swap(X&); size_type size() const; size_type max_size() const; bool empty() const; A get_allocator() const; //optional }; template <class T, class A = std::allocator<T> > void swap(X<T,A>&, X<T,A>&); //optional
此外,每当我制作一个容器时,我都或多或少地使用类进行测试,如下所示:
#include <cassert> struct verify; class tester { friend verify; static int livecount; const tester* self; public: tester() :self(this) {++livecount;} tester(const tester&) :self(this) {++livecount;} ~tester() {assert(self==this);--livecount;} tester& operator=(const tester& b) { assert(self==this && b.self == &b); return *this; } void cfunction() const {assert(self==this);} void mfunction() {assert(self==this);} }; int tester::livecount=0; struct verify { ~verify() {assert(tester::livecount==0);} }verifier;
制作 tester对象的容器,并在测试容器时调用每个对象的 function()。不要创建任何全局 tester对象。如果您的容器在任何地方作弊,这个 tester类将 assert,您将知道您在某个地方意外作弊。
tester
function()
assert
下面是一个非常简单的伪向量实现,它基本上是 std::vector的包装器,有自己的(但是实际的)迭代器,它模仿 STL 迭代器。同样,迭代器非常简单,跳过了许多概念,比如 const_iterator、有效性检查等等。
std::vector
const_iterator
代码可以立即运行。
#include <iostream> #include <string> #include <vector> template<typename T> struct It { std::vector<T>& vec_; int pointer_; It(std::vector<T>& vec) : vec_{vec}, pointer_{0} {} It(std::vector<T>& vec, int size) : vec_{vec}, pointer_{size} {} bool operator!=(const It<T>& other) const { return !(*this == other); } bool operator==(const It<T>& other) const { return pointer_ == other.pointer_; } It& operator++() { ++pointer_; return *this; } T& operator*() const { return vec_.at(pointer_); } }; template<typename T> struct Vector { std::vector<T> vec_; void push_back(T item) { vec_.push_back(item); }; It<T> begin() { return It<T>(vec_); } It<T> end() { return It<T>(vec_, vec_.size()); } }; int main() { Vector<int> vec; vec.push_back(1); vec.push_back(2); vec.push_back(3); bool first = true; for (It<int> it = vec.begin(); it != vec.end(); ++it) { if (first) //modify container once while iterating { vec.push_back(4); first = false; } std::cout << *it << '\n'; //print it (*it)++; //change it } for (It<int> it = vec.begin(); it != vec.end(); ++it) { std::cout << *it << '\n'; //should see changed value } }