如何在 NumPy 数组中找到连续的元素组

我必须对 NumPy 数组中的连续元素进行聚类

a = [ 0, 47, 48, 49, 50, 97, 98, 99]

输出应该是一个元组列表,如下所示

[(0), (47, 48, 49, 50), (97, 98, 99)]

这里的区别只是元素之间的区别。如果差异也可以指定为一个限制或硬编码的数字,那将是伟大的。

55671 次浏览

This sounds a little like homework, so if you dont mind I will suggest an approach

You can iterate over a list using

for i in range(len(a)):
print a[i]

You could test the next element in the list meets some criteria like follows

if a[i] == a[i] + 1:
print "it must be a consecutive run"

And you can store results seperately in

results = []

Beware - there is an index out of range error hidden in the above you will need to deal with

(a[1:]-a[:-1])==1 will produce a boolean array where False indicates breaks in the runs. You can also use the built-in numpy.grad.

Here's a lil func that might help:

def group_consecutives(vals, step=1):
"""Return list of consecutive lists of numbers from vals (number list)."""
run = []
result = [run]
expect = None
for v in vals:
if (v == expect) or (expect is None):
run.append(v)
else:
run = [v]
result.append(run)
expect = v + step
return result


>>> group_consecutives(a)
[[0], [47, 48, 49, 50], [97, 98, 99]]
>>> group_consecutives(a, step=47)
[[0, 47], [48], [49], [50, 97], [98], [99]]

P.S. This is pure Python. For a NumPy solution, see unutbu's answer.

this is what I came up so far: not sure is 100% correct

import numpy as np
a = np.array([ 0, 47, 48, 49, 50, 97, 98, 99])
print np.split(a, np.cumsum( np.where(a[1:] - a[:-1] > 1) )+1)

returns:

>>>[array([0]), array([47, 48, 49, 50]), array([97, 98, 99])]
def consecutive(data, stepsize=1):
return np.split(data, np.where(np.diff(data) != stepsize)[0]+1)


a = np.array([0, 47, 48, 49, 50, 97, 98, 99])
consecutive(a)

yields

[array([0]), array([47, 48, 49, 50]), array([97, 98, 99])]

Tested for one dimensional arrays

Get where diff isn't one

diffs = numpy.diff(array) != 1

Get the indexes of diffs, grab the first dimension and add one to all because diff compares with the previous index

indexes = numpy.nonzero(diffs)[0] + 1

Split with the given indexes

groups = numpy.split(array, indexes)

It turns out that instead of np.split, list comprehension is more performative. So the below function (almost like @unutbu's consecutive function except it uses a list comprehension to split the array) is much faster:

def consecutive_w_list_comprehension(arr, stepsize=1):
idx = np.r_[0, np.where(np.diff(arr) != stepsize)[0]+1, len(arr)]
return [arr[i:j] for i,j in zip(idx, idx[1:])]

For example, for an array of length 100_000, consecutive_w_list_comprehension is over 4x faster:

arr = np.sort(np.random.choice(range(150000), size=100000, replace=False))


%timeit -n 100 consecutive(arr)
96.1 ms ± 1.22 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)


%timeit -n 100 consecutive_w_list_comprehension(arr)
23.2 ms ± 858 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In fact, this relationship holds up no matter the size of the array. The plot below shows the runtime difference between the answers on here.

enter image description here

Code used to produce the plot above:

import perfplot
import numpy as np


def consecutive(data, stepsize=1):
return np.split(data, np.where(np.diff(data) != stepsize)[0]+1)


def consecutive_w_list_comprehension(arr, stepsize=1):
idx = np.r_[0, np.where(np.diff(arr) != stepsize)[0]+1, len(arr)]
return [arr[i:j] for i,j in zip(idx, idx[1:])]


def group_consecutives(vals, step=1):
run = []
result = [run]
expect = None
for v in vals:
if (v == expect) or (expect is None):
run.append(v)
else:
run = [v]
result.append(run)
expect = v + step
return result




def JozeWs(array):
diffs = np.diff(array) != 1
indexes = np.nonzero(diffs)[0] + 1
groups = np.split(array, indexes)
return groups


perfplot.show(
setup = lambda n: np.sort(np.random.choice(range(2*n), size=n, replace=False)),
kernels = [consecutive, consecutive_w_list_comprehension, group_consecutives, JozeWs],
labels = ['consecutive', 'consecutive_w_list_comprehension', 'group_consecutives', 'JozeWs'],
n_range = [2 ** k for k in range(5, 22)],
equality_check = lambda *lst: all((x==y).all() for x,y in zip(*lst)),
xlabel = '~len(arr)'
)