You've got the same basic restriction when running a 32bit process under Win64. Your app runs in a 32 but subsystem which does its best to look like Win32, and this will include the memory restrictions for your process (lower 2GB for you, upper 2GB for the OS)
A 32-bit process is still limited to the same constraints in a 64-bit OS. The issue is that memory pointers are only 32-bits wide, so the program can't assign/resolve any memory address larger than 32 bits.
Nobody seems to touch upon the fact that if you have many different 32-bit applications, the wow64 subsystem can map them anywhere in memory above 4G, so on a 64-bit windows with sufficient memory, you can run many more 32-bit applications than on a native 32-bit system.
An single 32-bit process under a 64-bit OS is limited to 2Gb. But if it is compiled to an EXE file with IMAGE_FILE_LARGE_ADDRESS_AWARE bit set, it then has a limit of 4 GB, not 2Gb - see https://msdn.microsoft.com/en-us/library/aa366778(VS.85).aspx
The things you hear about special boot flags, 3 GB, /3GB switches, or /userva are all about 32-bit operating systems and do not apply on 64-bit Windows.
As about the 32-bit operating systems, contrary to the belief, there is no physical limit of 4GB for 32-bit operating systems. For example, 32-bit Server Operating Systems like Microsoft Windows Server 2008 32-bit can access up to 64 GB (Windows Server 2008 Enterprise and Datacenter editions) – by means of Physical Address Extension (PAE), which was first introduced by Intel in the Pentium Pro, and later by AMD in the Athlon processor - it defines a page table hierarchy of three levels, with table entries of 64 bits each instead of 32, allowing these CPUs to directly access a physical address space larger than 4 gigabytes – so theoretically, a 32-bit OS can access 2^64 bytes theoretically, or 17,179,869,184 gigabytes, but the segment is limited by 4GB. However, due to marketing reasons, Microsoft have limited maximum accessible memory on non-server operating systems to just 4GB, or, even, 3GB effectively. Thus, a single process can access more than 4GB on a 32-bit OS - and Microsoft SQL server is an example.
32-bit processes under 64-bit Windows do not have any disadvantage comparing to 64-bit processes in using shared kernel's virtual address space (also called system space). All processes, be it 64-bit or 32-bit, under 64-bit Windows share the same 64-bit system space.