If the actual type of a reference instance differs from the declared type, the discriminator property will be automatically added to the output json:
public class WeatherForecast
{
public DateTimeOffset Date { get; set; }
public int TemperatureCelsius { get; set; }
public string Summary { get; set; }
}
public class WeatherForecastDerived : WeatherForecast
{
public int WindSpeed { get; set; }
}
Inherited classes must be manually registered to the discriminator convention registry in order to let the framework know about the mapping between a discriminator value and a type:
Is polymorphic deserialization possible in System.Text.Json?
The answer is yes and no, depending on what you mean by "possible".
There is no polymorphic deserialization (equivalent to Newtonsoft.Json's TypeNameHandling) support built-in to System.Text.Json. This is because reading the .NET type name specified as a string within the JSON payload (such as $type metadata property) to create your objects is not recommended since it introduces potential security concerns (see https://github.com/dotnet/corefx/issues/41347#issuecomment-535779492 for more info).
Allowing the payload to specify its own type information is a common source of vulnerabilities in web applications.
However, there is a way to add your own support for polymorphic deserialization by creating a JsonConverter<T>, so in that sense, it is possible.
Say you have a base class and a couple of derived classes:
public class BaseClass
{
public int Int { get; set; }
}
public class DerivedA : BaseClass
{
public string Str { get; set; }
}
public class DerivedB : BaseClass
{
public bool Bool { get; set; }
}
You can create the following JsonConverter<BaseClass> that writes the type discriminator while serializing and reads it to figure out which type to deserialize. You can register that converter on the JsonSerializerOptions.
public class BaseClassConverter : JsonConverter<BaseClass>
{
private enum TypeDiscriminator
{
BaseClass = 0,
DerivedA = 1,
DerivedB = 2
}
public override bool CanConvert(Type type)
{
return typeof(BaseClass).IsAssignableFrom(type);
}
public override BaseClass Read(
ref Utf8JsonReader reader,
Type typeToConvert,
JsonSerializerOptions options)
{
if (reader.TokenType != JsonTokenType.StartObject)
{
throw new JsonException();
}
if (!reader.Read()
|| reader.TokenType != JsonTokenType.PropertyName
|| reader.GetString() != "TypeDiscriminator")
{
throw new JsonException();
}
if (!reader.Read() || reader.TokenType != JsonTokenType.Number)
{
throw new JsonException();
}
BaseClass baseClass;
TypeDiscriminator typeDiscriminator = (TypeDiscriminator)reader.GetInt32();
switch (typeDiscriminator)
{
case TypeDiscriminator.DerivedA:
if (!reader.Read() || reader.GetString() != "TypeValue")
{
throw new JsonException();
}
if (!reader.Read() || reader.TokenType != JsonTokenType.StartObject)
{
throw new JsonException();
}
baseClass = (DerivedA)JsonSerializer.Deserialize(ref reader, typeof(DerivedA));
break;
case TypeDiscriminator.DerivedB:
if (!reader.Read() || reader.GetString() != "TypeValue")
{
throw new JsonException();
}
if (!reader.Read() || reader.TokenType != JsonTokenType.StartObject)
{
throw new JsonException();
}
baseClass = (DerivedB)JsonSerializer.Deserialize(ref reader, typeof(DerivedB));
break;
default:
throw new NotSupportedException();
}
if (!reader.Read() || reader.TokenType != JsonTokenType.EndObject)
{
throw new JsonException();
}
return baseClass;
}
public override void Write(
Utf8JsonWriter writer,
BaseClass value,
JsonSerializerOptions options)
{
writer.WriteStartObject();
if (value is DerivedA derivedA)
{
writer.WriteNumber("TypeDiscriminator", (int)TypeDiscriminator.DerivedA);
writer.WritePropertyName("TypeValue");
JsonSerializer.Serialize(writer, derivedA);
}
else if (value is DerivedB derivedB)
{
writer.WriteNumber("TypeDiscriminator", (int)TypeDiscriminator.DerivedB);
writer.WritePropertyName("TypeValue");
JsonSerializer.Serialize(writer, derivedB);
}
else
{
throw new NotSupportedException();
}
writer.WriteEndObject();
}
}
This is what serialization and deserialization would look like (including comparison with Newtonsoft.Json):
I ended up with that solution. It's lightwight and a generic enough for me.
The type discriminator converter
public class TypeDiscriminatorConverter<T> : JsonConverter<T> where T : ITypeDiscriminator
{
private readonly IEnumerable<Type> _types;
public TypeDiscriminatorConverter()
{
var type = typeof(T);
_types = AppDomain.CurrentDomain.GetAssemblies()
.SelectMany(s => s.GetTypes())
.Where(p => type.IsAssignableFrom(p) && p.IsClass && !p.IsAbstract)
.ToList();
}
public override T Read(ref Utf8JsonReader reader, Type typeToConvert, JsonSerializerOptions options)
{
if (reader.TokenType != JsonTokenType.StartObject)
{
throw new JsonException();
}
using (var jsonDocument = JsonDocument.ParseValue(ref reader))
{
if (!jsonDocument.RootElement.TryGetProperty(nameof(ITypeDiscriminator.TypeDiscriminator), out var typeProperty))
{
throw new JsonException();
}
var type = _types.FirstOrDefault(x => x.Name == typeProperty.GetString());
if (type == null)
{
throw new JsonException();
}
var jsonObject = jsonDocument.RootElement.GetRawText();
var result = (T) JsonSerializer.Deserialize(jsonObject, type, options);
return result;
}
}
public override void Write(Utf8JsonWriter writer, T value, JsonSerializerOptions options)
{
JsonSerializer.Serialize(writer, (object)value, options);
}
}
The interface
public interface ITypeDiscriminator
{
string TypeDiscriminator { get; }
}
And the example models
public interface ISurveyStepResult : ITypeDiscriminator
{
string Id { get; set; }
}
public class BoolStepResult : ISurveyStepResult
{
public string Id { get; set; }
public string TypeDiscriminator => nameof(BoolStepResult);
public bool Value { get; set; }
}
public class TextStepResult : ISurveyStepResult
{
public string Id { get; set; }
public string TypeDiscriminator => nameof(TextStepResult);
public string Value { get; set; }
}
public class StarsStepResult : ISurveyStepResult
{
public string Id { get; set; }
public string TypeDiscriminator => nameof(StarsStepResult);
public int Value { get; set; }
}
And here is the test method
public void SerializeAndDeserializeTest()
{
var surveyResult = new SurveyResultModel()
{
Id = "id",
SurveyId = "surveyId",
Steps = new List<ISurveyStepResult>()
{
new BoolStepResult(){ Id = "1", Value = true},
new TextStepResult(){ Id = "2", Value = "some text"},
new StarsStepResult(){ Id = "3", Value = 5},
}
};
var jsonSerializerOptions = new JsonSerializerOptions()
{
Converters = { new TypeDiscriminatorConverter<ISurveyStepResult>()},
WriteIndented = true
};
var result = JsonSerializer.Serialize(surveyResult, jsonSerializerOptions);
var back = JsonSerializer.Deserialize<SurveyResultModel>(result, jsonSerializerOptions);
var result2 = JsonSerializer.Serialize(back, jsonSerializerOptions);
Assert.IsTrue(back.Steps.Count == 3
&& back.Steps.Any(x => x is BoolStepResult)
&& back.Steps.Any(x => x is TextStepResult)
&& back.Steps.Any(x => x is StarsStepResult)
);
Assert.AreEqual(result2, result);
}
public override bool CanConvert(Type type)
{
return typeof(BaseClass).IsAssignableFrom(type);
}
If you class contain baseClass property then you deserialize him like baseClass.
If you baseClass is abstract and contain baseClass property then you got Exception.
It's safer to write like this:
public class BaseClass
{
public int Int { get; set; }
}
public class DerivedA : BaseClass
{
public string Str { get; set; }
public BaseClass derived { get; set; }
}
public class DerivedB : BaseClass
{
public bool Bool { get; set; }
public BaseClass derived { get; set; }
}
public class BaseClassConverter : JsonConverter<BaseClass>
{
private enum TypeDiscriminator
{
BaseClass = 0,
DerivedA = 1,
DerivedB = 2
}
public override bool CanConvert(Type type)
{
return typeof(BaseClass) == type;
}
public override BaseClass Read(
ref Utf8JsonReader reader,
Type typeToConvert,
JsonSerializerOptions options)
{
if (reader.TokenType != JsonTokenType.StartObject)
{
throw new JsonException();
}
if (!reader.Read()
|| reader.TokenType != JsonTokenType.PropertyName
|| reader.GetString() != "TypeDiscriminator")
{
throw new JsonException();
}
if (!reader.Read() || reader.TokenType != JsonTokenType.Number)
{
throw new JsonException();
}
BaseClass baseClass;
TypeDiscriminator typeDiscriminator = (TypeDiscriminator)reader.GetInt32();
switch (typeDiscriminator)
{
case TypeDiscriminator.DerivedA:
if (!reader.Read() || reader.GetString() != "TypeValue")
{
throw new JsonException();
}
if (!reader.Read() || reader.TokenType != JsonTokenType.StartObject)
{
throw new JsonException();
}
baseClass = (DerivedA)JsonSerializer.Deserialize(ref reader, typeof(DerivedA), options);
break;
case TypeDiscriminator.DerivedB:
if (!reader.Read() || reader.GetString() != "TypeValue")
{
throw new JsonException();
}
if (!reader.Read() || reader.TokenType != JsonTokenType.StartObject)
{
throw new JsonException();
}
baseClass = (DerivedB)JsonSerializer.Deserialize(ref reader, typeof(DerivedB), options);
break;
case TypeDiscriminator.BaseClass:
if (!reader.Read() || reader.GetString() != "TypeValue")
{
throw new JsonException();
}
if (!reader.Read() || reader.TokenType != JsonTokenType.StartObject)
{
throw new JsonException();
}
baseClass = (BaseClass)JsonSerializer.Deserialize(ref reader, typeof(BaseClass));
break;
default:
throw new NotSupportedException();
}
if (!reader.Read() || reader.TokenType != JsonTokenType.EndObject)
{
throw new JsonException();
}
return baseClass;
}
public override void Write(
Utf8JsonWriter writer,
BaseClass value,
JsonSerializerOptions options)
{
writer.WriteStartObject();
if (value is DerivedA derivedA)
{
writer.WriteNumber("TypeDiscriminator", (int)TypeDiscriminator.DerivedA);
writer.WritePropertyName("TypeValue");
JsonSerializer.Serialize(writer, derivedA, options);
}
else if (value is DerivedB derivedB)
{
writer.WriteNumber("TypeDiscriminator", (int)TypeDiscriminator.DerivedB);
writer.WritePropertyName("TypeValue");
JsonSerializer.Serialize(writer, derivedB, options);
}
else if (value is BaseClass baseClass)
{
writer.WriteNumber("TypeDiscriminator", (int)TypeDiscriminator.BaseClass);
writer.WritePropertyName("TypeValue");
JsonSerializer.Serialize(writer, baseClass);
}
else
{
throw new NotSupportedException();
}
writer.WriteEndObject();
}
}
But you BaseClass don't must contain property with type BaseClass or inheritor.
I really liked the answer of Demetrius, but I think you can go even further in terms of re-usability. I came up with the following solution:
The JsonConverterFactory:
/// <summary>
/// Represents the <see cref="JsonConverterFactory"/> used to create <see cref="AbstractClassConverter{T}"/>
/// </summary>
public class AbstractClassConverterFactory
: JsonConverterFactory
{
/// <summary>
/// Gets a <see cref="Dictionary{TKey, TValue}"/> containing the mappings of types to their respective <see cref="JsonConverter"/>
/// </summary>
protected static Dictionary<Type, JsonConverter> Converters = new Dictionary<Type, JsonConverter>();
/// <summary>
/// Initializes a new <see cref="AbstractClassConverterFactory"/>
/// </summary>
/// <param name="namingPolicy">The current <see cref="JsonNamingPolicy"/></param>
public AbstractClassConverterFactory(JsonNamingPolicy namingPolicy)
{
this.NamingPolicy = namingPolicy;
}
/// <summary>
/// Gets the current <see cref="JsonNamingPolicy"/>
/// </summary>
protected JsonNamingPolicy NamingPolicy { get; }
/// <inheritdoc/>
public override bool CanConvert(Type typeToConvert)
{
return typeToConvert.IsClass && typeToConvert.IsAbstract && typeToConvert.IsDefined(typeof(DiscriminatorAttribute));
}
/// <inheritdoc/>
public override JsonConverter CreateConverter(Type typeToConvert, JsonSerializerOptions options)
{
if(!Converters.TryGetValue(typeToConvert, out JsonConverter converter))
{
Type converterType = typeof(AbstractClassConverter<>).MakeGenericType(typeToConvert);
converter = (JsonConverter)Activator.CreateInstance(converterType, this.NamingPolicy);
Converters.Add(typeToConvert, converter);
}
return converter;
}
}
The JsonConverter:
/// <summary>
/// Represents the <see cref="JsonConverter"/> used to convert to/from an abstract class
/// </summary>
/// <typeparam name="T">The type of the abstract class to convert to/from</typeparam>
public class AbstractClassConverter<T>
: JsonConverter<T>
{
/// <summary>
/// Initializes a new <see cref="AbstractClassConverter{T}"/>
/// </summary>
/// <param name="namingPolicy">The current <see cref="JsonNamingPolicy"/></param>
public AbstractClassConverter(JsonNamingPolicy namingPolicy)
{
this.NamingPolicy = namingPolicy;
DiscriminatorAttribute discriminatorAttribute = typeof(T).GetCustomAttribute<DiscriminatorAttribute>();
if (discriminatorAttribute == null)
throw new NullReferenceException($"Failed to find the required '{nameof(DiscriminatorAttribute)}'");
this.DiscriminatorProperty = typeof(T).GetProperty(discriminatorAttribute.Property, BindingFlags.Default | BindingFlags.Public | BindingFlags.Instance);
if (this.DiscriminatorProperty == null)
throw new NullReferenceException($"Failed to find the specified discriminator property '{discriminatorAttribute.Property}' in type '{typeof(T).Name}'");
this.TypeMappings = new Dictionary<string, Type>();
foreach (Type derivedType in TypeCacheUtil.FindFilteredTypes($"nposm:json-polymorph:{typeof(T).Name}",
(t) => t.IsClass && !t.IsAbstract && t.BaseType == typeof(T)))
{
DiscriminatorValueAttribute discriminatorValueAttribute = derivedType.GetCustomAttribute<DiscriminatorValueAttribute>();
if (discriminatorValueAttribute == null)
continue;
string discriminatorValue = null;
if (discriminatorValueAttribute.Value.GetType().IsEnum)
discriminatorValue = EnumHelper.Stringify(discriminatorValueAttribute.Value, this.DiscriminatorProperty.PropertyType);
else
discriminatorValue = discriminatorValueAttribute.Value.ToString();
this.TypeMappings.Add(discriminatorValue, derivedType);
}
}
/// <summary>
/// Gets the current <see cref="JsonNamingPolicy"/>
/// </summary>
protected JsonNamingPolicy NamingPolicy { get; }
/// <summary>
/// Gets the discriminator <see cref="PropertyInfo"/> of the abstract type to convert
/// </summary>
protected PropertyInfo DiscriminatorProperty { get; }
/// <summary>
/// Gets an <see cref="Dictionary{TKey, TValue}"/> containing the mappings of the converted type's derived types
/// </summary>
protected Dictionary<string, Type> TypeMappings { get; }
/// <inheritdoc/>
public override T Read(ref Utf8JsonReader reader, Type typeToConvert, JsonSerializerOptions options)
{
if (reader.TokenType != JsonTokenType.StartObject)
throw new JsonException("Start object token type expected");
using (JsonDocument jsonDocument = JsonDocument.ParseValue(ref reader))
{
string discriminatorPropertyName = this.NamingPolicy?.ConvertName(this.DiscriminatorProperty.Name);
if (!jsonDocument.RootElement.TryGetProperty(discriminatorPropertyName, out JsonElement discriminatorProperty))
throw new JsonException($"Failed to find the required '{this.DiscriminatorProperty.Name}' discriminator property");
string discriminatorValue = discriminatorProperty.GetString();
if (!this.TypeMappings.TryGetValue(discriminatorValue, out Type derivedType))
throw new JsonException($"Failed to find the derived type with the specified discriminator value '{discriminatorValue}'");
string json = jsonDocument.RootElement.GetRawText();
return (T)JsonSerializer.Deserialize(json, derivedType);
}
}
/// <inheritdoc/>
public override void Write(Utf8JsonWriter writer, T value, JsonSerializerOptions options)
{
JsonSerializer.Serialize(writer, (object)value, options);
}
}
The DiscriminatorAttribute:
/// <summary>
/// Represents the <see cref="Attribute"/> used to indicate the property used to discriminate derived types of the marked class
/// </summary>
[AttributeUsage(AttributeTargets.Class, AllowMultiple = false)]
public class DiscriminatorAttribute
: Attribute
{
/// <summary>
/// Initializes a new <see cref="DiscriminatorAttribute"/>
/// </summary>
/// <param name="property">The name of the property used to discriminate derived types of the class marked by the <see cref="DiscriminatorAttribute"/></param>
public DiscriminatorAttribute(string property)
{
this.Property = property;
}
/// <summary>
/// Gets the name of the property used to discriminate derived types of the class marked by the <see cref="DiscriminatorAttribute"/>
/// </summary>
public string Property { get; }
}
The DiscriminatorValueAttribute:
/// <summary>
/// Represents the <see cref="Attribute"/> used to indicate the discriminator value of a derived type
/// </summary>
[AttributeUsage(AttributeTargets.Class, AllowMultiple = false)]
public class DiscriminatorValueAttribute
: Attribute
{
/// <summary>
/// Initializes a new <see cref="DiscriminatorValueAttribute"/>
/// </summary>
/// <param name="value">The value used to discriminate the derived type marked by the <see cref="DiscriminatorValueAttribute"/></param>
public DiscriminatorValueAttribute(object value)
{
this.Value = value;
}
/// <summary>
/// Gets the value used to discriminate the derived type marked by the <see cref="DiscriminatorValueAttribute"/>
/// </summary>
public object Value { get; }
}
And finally, an example of how to use it on classes:
[Discriminator(nameof(Type))]
public abstract class Identity
{
public virtual IdentityType Type { get; protected set; }
}
[DiscriminatorValue(IdentityType.Person)]
public class Person
: Identity
{
}
And... Voilà!
All that is left to do is to register the factory:
Throwing this option out there: Using a source code generator to generate a JsonConverter automatically for objects with a property marked with a special attribute
You can try it with this package, but it requires .net5
The generator looks at the type of the property marked with a discriminator attribute, and then looks for types inheriting from the type holding the discriminator to match up with each case of the enum
enum AnimalType
{
Insect,
Mammal,
Reptile,
Bird // <- This causes an easy to understand build error if it's missing a corresponding inherited type!
}
// My base type is 'Animal'
abstract partial record Animal( [JsonDiscriminator] AnimalType type, string Name );
// Animals with type = 'Insect' will automatically deserialize as `Insect`
record Insect(int NumLegs = 6, int NumEyes=4) : Animal(AnimalType.Insect, "Insectoid");
record Mammal(int NumNipples = 2) : Animal(AnimalType.Mammal, "Mammalian");
record Reptile(bool ColdBlooded = true) : Animal(AnimalType.Reptile, "Reptilian");
For interface property deserialization I've created a simple StaticTypeMapConverter
public class StaticTypeMapConverter<SourceType, TargetType> : JsonConverter<SourceType>
where SourceType : class
where TargetType : class, new()
{
public override SourceType Read(ref Utf8JsonReader reader, Type typeToConvert, JsonSerializerOptions options)
{
if (reader.TokenType != JsonTokenType.StartObject)
{
throw new JsonException();
}
using (var jsonDocument = JsonDocument.ParseValue(ref reader))
{
var jsonObject = jsonDocument.RootElement.GetRawText();
var result = (SourceType)JsonSerializer.Deserialize(jsonObject, typeof(TargetType), options);
return result;
}
}
public override void Write(Utf8JsonWriter writer, SourceType value, JsonSerializerOptions options)
{
JsonSerializer.Serialize(writer, (object)value, options);
}
}
You can use it like this:
var jsonSerializerOptions = new JsonSerializerOptions()
{
Converters = {
new StaticTypeMapConverter<IMyInterface, MyImplementation>(),
new StaticTypeMapConverter<IMyInterface2, MyInterface2Class>(),
},
WriteIndented = true
};
var config = JsonSerializer.Deserialize<Config>(configContentJson, jsonSerializerOptions);
I changed a couple things based on ahsonkhan's answer.
Personally I like this way since the client can just give their object to the server.
However, the 'Type' property must be first in the object.
Base class and derived classes:
public interface IBaseClass
{
public DerivedType Type { get; set; }
}
public class DerivedA : IBaseClass
{
public DerivedType Type => DerivedType.DerivedA;
public string Str { get; set; }
}
public class DerivedB : IBaseClass
{
public DerivedType Type => DerivedType.DerivedB;
public bool Bool { get; set; }
}
private enum DerivedType
{
DerivedA = 0,
DerivedB = 1
}
You can create JsonConverter<IBaseClass> that reads and checks the 'Type' property while serializing. It will use that to figure out which type to deserialize.
The reader has to be copied since we read the first property as the type. And then we have to read the full object again (pass it to the Deserialize method).
public class BaseClassConverter : JsonConverter<IBaseClass>
{
public override IBaseClass Read(
ref Utf8JsonReader reader,
Type typeToConvert,
JsonSerializerOptions options)
{
// Creating a copy of the reader (The derived deserialisation has to be done from the start)
Utf8JsonReader typeReader = reader;
if (reader.TokenType != JsonTokenType.StartObject)
{
throw new JsonException();
}
if (!reader.Read() || reader.TokenType != JsonTokenType.PropertyName)
{
throw new JsonException();
}
if (!reader.Read() || reader.TokenType != JsonTokenType.Number)
{
throw new JsonException();
}
IBaseClass baseClass = default;
DerivedType type= (DerivedType)reader.GetInt32();
switch (type)
{
case DerivedType.DerivedA:
baseClass = (DerivedA)JsonSerializer.Deserialize(ref reader, typeof(DerivedA));
break;
case DerivedType.DerivedB:
baseClass = (DerivedB)JsonSerializer.Deserialize(ref reader, typeof(DerivedB));
break;
default:
throw new NotSupportedException();
}
return baseClass;
}
public override void Write(
Utf8JsonWriter writer,
IBaseClass value,
JsonSerializerOptions options)
{
switch(value)
{
case DerivedA derivedA:
JsonSerializer.Serialize(writer, derivedA, options);
break;
case DerivedB derivedB:
JsonSerializer.Serialize(writer, derivedB, options);
break;
default:
throw new NotSupportedException();
}
}
}
The client is now able to send objects as follows:
Edited the Read method to be able to deal with the property name not being in the first order. Now it just reads through the json and stops until it finds the 'Type' property name
public override IBaseClass Read(
ref Utf8JsonReader reader,
Type typeToConvert,
JsonSerializerOptions options)
{
Utf8JsonReader typeReader = reader;
if (typeReader.TokenType != JsonTokenType.StartObject)
{
throw new JsonException();
}
while (typeReader.Read())
{
if (typeReader.TokenType != JsonTokenType.PropertyName)
{
throw new JsonException();
}
string propertyName = typeReader.GetString();
if (propertyName.Equals(nameof(IBaseClass.Type)))
{
break;
}
typeReader.Skip();
}
if (!typeReader.Read() || typeReader.TokenType != JsonTokenType.Number)
{
throw new JsonException();
}
IGraphOptions baseClass = default;
GraphType type = (GraphType)typeReader.GetInt32();
....
// The switch..
....
To be honest, I think the way this custom System.Text JsonConverter is set up is unneccesary complex and I prefer the Newtonsoft JsonConverter.
I want to throw in another implementation suitable for hierarchical, secure, bi-directional, generic usage.
The following caveats
It is a performance and memory "nightmare" but good enough for most scenarios (why: because you need to read ahead $type and then would need to go back on the reader).
It works only if the polymorphic base is abstract / never serialized as instance itself (why: because otherwise the regular converter cannot work on the derived classes as it goes into stack overflow).
Works under .NET 6 ... will not in 3.1.
Example
public abstract record QueryClause(); // the abstract is kind of important
public record AndClause(QueryClause[] SubClauses) : QueryClause();
public record OrClause(QueryClause[] SubClauses) : QueryClause();
// ...
JsonSerializerOptions options = new JsonSerializerOptions();
options.Converters.Add(new BaseClassConverter<QueryClause>(
typeof(AndClause),
typeof(OrClause)));
// ...
Converter
public class BaseClassConverter<TBaseType> : JsonConverter<TBaseType>
where TBaseType : class
{
private readonly Type[] _types;
private const string TypeProperty = "$type";
public BaseClassConverter(params Type[] types)
{
_types = types;
}
public override bool CanConvert(Type type)
=> typeof(TBaseType) == type; // only responsible for the abstract base
public override TBaseType Read(
ref Utf8JsonReader reader,
Type typeToConvert,
JsonSerializerOptions options)
{
TBaseType result;
if (JsonDocument.TryParseValue(ref reader, out var doc))
{
if (doc.RootElement.TryGetProperty(TypeProperty, out var typeProperty))
{
var typeName = typeProperty.GetString();
var type = _types.FirstOrDefault(t => t.Name == typeName) ?? throw new JsonException($"{TypeProperty} specifies an invalid type");
var rootElement = doc.RootElement.GetRawText();
result = JsonSerializer.Deserialize(rootElement, type, options) as TBaseType ?? throw new JsonException("target type could not be serialized");
}
else
{
throw new JsonException($"{TypeProperty} missing");
}
}
else
{
throw new JsonException("Failed to parse JsonDocument");
}
return result;
}
public override void Write(
Utf8JsonWriter writer,
TBaseType value,
JsonSerializerOptions options)
{
var type = value.GetType();
if (_types.Any(t => type.Name == t.Name))
{
var jsonElement = JsonSerializer.SerializeToElement(value, type, options);
var jsonObject = JsonObject.Create(jsonElement) ?? throw new JsonException();
jsonObject[TypeProperty] = type.Name;
jsonObject.WriteTo(writer, options);
}
else
{
throw new JsonException($"{type.Name} with matching base type {typeof(TBaseType).Name} is not registered.");
}
}
}
Basing on the accepted answer, but using KnownTypeAttribute to discover the types (often enumerating all types can lead to unwanted type load exceptions) , and adding the discriminator property in the converter instead of having the class implement it itself:
public class TypeDiscriminatorConverter<T> : JsonConverter<T>
{
private readonly IEnumerable<Type> _types;
public TypeDiscriminatorConverter()
{
var type = typeof(T);
var knownTypes = type.GetCustomAttributes(typeof(KnownTypeAttribute), false).OfType<KnownTypeAttribute>();
_types = knownTypes.Select(x => x.Type).ToArray();
}
public override T Read(ref Utf8JsonReader reader, Type typeToConvert, JsonSerializerOptions options)
{
if (reader.TokenType != JsonTokenType.StartObject)
{
throw new JsonException();
}
using (var jsonDocument = JsonDocument.ParseValue(ref reader))
{
if (!jsonDocument.RootElement.TryGetProperty("discriminator",
out var typeProperty))
{
throw new JsonException();
}
var type = _types.FirstOrDefault(x => x.FullName == typeProperty.GetString());
if (type == null)
{
throw new JsonException();
}
var jsonObject = jsonDocument.RootElement.GetRawText();
var result = (T)JsonSerializer.Deserialize(jsonObject, type, options);
return result;
}
}
public override void Write(Utf8JsonWriter writer, T value, JsonSerializerOptions options)
{
writer.WriteStartObject();
using (JsonDocument document = JsonDocument.Parse(JsonSerializer.Serialize(value)))
{
writer.WritePropertyName("discriminator");
writer.WriteStringValue(value.GetType().FullName);
foreach (var property in document.RootElement.EnumerateObject())
{
property.WriteTo(writer);
}
}
writer.WriteEndObject();
}
}
which you can use like this:
[JsonConverter(typeof(JsonInheritanceConverter))]
[KnownType(typeof(DerivedA))]
[KnownType(typeof(DerivedB))]
public abstract class BaseClass
{
//..
}
Not very elegant or efficient, but quick to code for a small number of child types:
List<Dictionary<string, object>> generics = JsonSerializer.Deserialize<List<Dictionary<string, object>>>(json);
List<InputOutputInstanceDto> result = new List<ParentType>();
foreach (Dictionary<string, object> item in generics)
{
switch(item["dataType"]) // use whatever field is in your parent/interface
{
case "Type1":
result.Add(JsonSerializer.Deserialize<Type1>(
JsonSerializer.Serialize(item)));
break
// add cases for each child type supported
default:
result.Add(JsonSerializer.Deserialize<ParentType>(
JsonSerializer.Serialize(item)));
break;
}
}
I like to share with you an issue I found using System.Text.Json. I followed the approach TypeDiscriminatorConverter that Demetrius Axenowski. It works very well.
My problems started when I added some annotations for the JSON. For example:
[JsonPropertyName("name")]
I have lost all day to understand why the code didn't work. I created some dummy code to understand where the problem was. All the source code is now on GitHub.
So, the problem was in the JsonPropertyName for the property I check in the converter. For example, this is a class
public class Radiobutton : ElementBase
{
[JsonPropertyName("type")]
public string Type => "Radiobutton";
public ElementType ElementType = ElementType.Radiobutton;
public List<string>? Choices { get; set; }
}
As you can see, I set the JsonPropertyName because I like to see type in lower case. Now, if I convert the class with this converter:
public class ElementTypeConverter<T> : JsonConverter<T> where T : IElementType
{
private readonly IEnumerable<Type> _types;
public ElementTypeConverter()
{
var type = typeof(T);
_types = AppDomain.CurrentDomain.GetAssemblies()
.SelectMany(s => s.GetTypes())
.Where(p => type.IsAssignableFrom(p) && p.IsClass && !p.IsAbstract)
.ToList();
}
public override T Read(ref Utf8JsonReader reader,
Type typeToConvert, JsonSerializerOptions options)
{
if (reader.TokenType != JsonTokenType.StartObject)
{
throw new JsonException();
}
using (var jsonDocument = JsonDocument.ParseValue(ref reader))
{
if (!jsonDocument.RootElement.TryGetProperty(
nameof(IElementType.Type), out var typeProperty))
{
throw new JsonException();
}
var type = _types.FirstOrDefault(x => x.Name ==
typeProperty.GetString());
if (type == null)
{
throw new JsonException();
}
var jsonObject = jsonDocument.RootElement.GetRawText();
var result = (T)JsonSerializer.Deserialize(jsonObject, type, options);
return result;
}
}
public override void Write(Utf8JsonWriter writer, T value,
JsonSerializerOptions options)
{
JsonSerializer.Serialize(writer, (object)value, options);
}
}
I get the following error:
Test method SurveyExampleNetStardard21.Tests.UnitTest1.TestConversionJson_SystemTextJson_3Textbox_1radiobutton threw exception:
System.Text.Json.JsonException: The JSON value could not be converted to System.Collections.Generic.List`1[SurveyExampleNetStardard21.Interfaces.IElement]. Path: $.Elements[3] | LineNumber: 42 | BytePositionInLine: 5.
I removed the JsonPropertyName and it works fine. I tried to set
[JsonPropertyName("Type")]
(basically, the same as the variable) and it works fine. So, don't change the name. The converter is working both ways (object to Json and Json to object). This is the test code:
var jsonSerializerOptions = new JsonSerializerOptions()
{
Converters = { new ElementTypeConverter<IElement>() },
WriteIndented = true
};
var json = JsonSerializer.Serialize(form, jsonSerializerOptions);
var back = JsonSerializer.Deserialize<Form>(json, jsonSerializerOptions);
var json2 = JsonSerializer.Serialize(back, jsonSerializerOptions);
Another annotation is related to Newtonsoft.Json: I converted the object to Json and it was good without any particular configuration. When I tried to convert the result Json in the object, I got issues in the conversion.
System.Text.Json now supports polymorphic serialization and deserialization of user-defined type hierarchies. This can be enabled by decorating the base class of a type hierarchy with the new JsonDerivedTypeAttribute.
First, let's consider serialization. Say you have the following type hierarchy:
public abstract class BaseType { } // Properties omitted
public class DerivedType1 : BaseType { public string Derived1 { get; set; } }
public class DerivedType2 : BaseType { public int Derived2 { get; set; } }
And you have a data model that includes a value whose declared type is BaseType, e.g.
var list = new List<BaseType> { new DerivedType1 { Derived1 = "value 1" } };
In previous versions, System.Text.Json would only serialize the properties of the declared type BaseType. Now you will be able to include the properties of DerivedType1 when serializing a value declared as BaseType by adding [JsonDerivedType(typeof(TDerivedType))] to BaseType for all derived types:
[JsonDerivedType(typeof(DerivedType1))]
[JsonDerivedType(typeof(DerivedType2))]
public abstract class BaseType { } // Properties omitted
Having whitelisted DerivedType1 in this manner, serialization of your model:
Do note that only derived types whitelisted via attribute (or through setting JsonTypeInfo.PolymorphismOptions in runtime) can be serialized via this mechanism. If you have some other derived type which is not whitelisted, e.g.:
public class DerivedType3 : BaseType { public string Derived3 { get; set; } }
Then JsonSerializer.Serialize(new BaseType [] { new DerivedType3 { Derived3 = "value 3" } }) will throw a System.NotSupportedException: Runtime type 'DerivedType3' is not supported by polymorphic type 'BaseType' exception. Demo fiddle #2 here.
That covers serialization. If you need to round-trip your type hierarchy, you will need to supply a type discriminator property value to use for each derived type. This may be done providing a value for JsonDerivedTypeAttribute.TypeDiscriminator for each derived type:
[JsonDerivedType(typeof(DerivedType1), "DerivedType1")]
[JsonDerivedType(typeof(DerivedType2), "DerivedType2")]
public abstract class BaseType { } // Properties omitted
Now when you serialize your model
var json = JsonSerializer.Serialize(list);
System.Text.Json will add an artificial type discriminator property "$type" indicating the type that was serialized:
Having done so, you can now deserialize your data model like so:
var list2 = JsonSerializer.Deserialize<List<BaseType>>(json);
And the actual, concrete type(s) serialized will be preserved. Demo fiddle #3 here.
It is also possible to inform System.Text.Json of your type hierarchy in runtime via Contract Customization. You might need to do this when your type hierarchy cannot be modified, or when some derived types are in different assemblies and cannot be referenced at compile time, or you are trying to interoperate between multiple legacy serializers. The basic workflow here will be to instantiate an instance of DefaultJsonTypeInfoResolver and add a modifier which sets up the necessary PolymorphismOptions for the JsonTypeInfo for your base type.
For example, polymorphic serialization for the BaseType hierarchy can be enabled in runtime like so:
var resolver = new DefaultJsonTypeInfoResolver
{
Modifiers =
{
// Add an Action<JsonTypeInfo> modifier that sets up the polymorphism options for BaseType
static typeInfo =>
{
if (typeInfo.Type != typeof(BaseType))
return;
typeInfo.PolymorphismOptions = new()
{
DerivedTypes =
{
new JsonDerivedType(typeof(DerivedType1), "Derived1"),
new JsonDerivedType(typeof(DerivedType2), "Derived2")
}
};
},
// Add other modifiers as required.
}
};
var options = new JsonSerializerOptions
{
TypeInfoResolver = resolver,
// Add other options as required
};
var json = JsonSerializer.Serialize(list, options);
The whitelisting approach is consistent with the approach of the data contract serializers, which use the KnownTypeAttribute, and XmlSerializer, which uses XmlIncludeAttribute. It is inconsistent with Json.NET, whose TypeNameHandling serializes type information for all types unless explicitly filtered via a serialization binder.
Integers as well as strings may be used for the type discriminator name. If you define your type hierarchy as follows:
[JsonDerivedType(typeof(DerivedType1), 1)]
[JsonDerivedType(typeof(DerivedType2), 2)]
public abstract class BaseType { } // Properties omitted
Then serializing the list above results in
[{"$type" : 1, "Derived1" : "value 1"}]
Numeric type discriminator values are not used by Newtonsoft however, so if you are interoperating with a legacy serializer you might want to avoid this.
The default type discriminator property name, "$type", is the same type discriminator name used by Json.NET. If you would prefer to use a different property name, such as the name "__type" used by DataContractJsonSerializer, apply JsonPolymorphicAttribute to the base type and set TypeDiscriminatorPropertyName like so:
[JsonPolymorphic(TypeDiscriminatorPropertyName = "__type")]
[JsonDerivedType(typeof(DerivedType1), "DerivedType1")]
[JsonDerivedType(typeof(DerivedType2), "DerivedType2")]
public abstract class BaseType { } // Properties omitted
If you are interoperating with Json.NET (or DataContractJsonSerializer), you may set the value of TypeDiscriminator equal to the type discriminator value used by the legacy serializer.
An object of undeclared runtime type will fail polymorphic serialization.
FallBackToBaseType
1
An object of undeclared runtime type will fall back to the serialization contract of the base type.
FallBackToNearestAncestor
2
An object of undeclared runtime type will revert to the serialization contract of the nearest declared ancestor type. Certain interface hierarchies are not supported due to diamond ambiguity constraints.