eval is likely the only way to accomplish it. The only real downside is the security aspect of it, as you need to make sure that nothing malicious gets passed in and only functions you want to get called will be called (along with checking that it doesn't have nasty characters like ';' in it as well).
So if you're the one calling the code, then eval is likely the only way to do it. Note that there are other forms of eval that would likely work too involving subcommands ($() and ``), but they're not safer and are more expensive.
A better approach is to use local variables in your functions. The problem then becomes how do you get the result to the caller. One mechanism is to use command substitution:
function myfunc()
{
local myresult='some value'
echo "$myresult"
}
result=$(myfunc) # or result=`myfunc`
echo $result
Here the result is output to the stdout and the caller uses command substitution to capture the value in a variable. The variable can then be used as needed.
You can't pass anything to a function other than strings. Process substitutions can sort of fake it. Bash tends to hold open the FIFO until a command its expanded to completes.
Here's a quick silly one
foldl() {
echo $(($(</dev/stdin)$2))
} < <(tr '\n' "$1" <$3)
# Sum 20 random ints from 0-999
foldl + 0 <(while ((n=RANDOM%999,x++<20)); do echo $n; done)
Functions can be exported, but this isn't as interesting as it first appears. I find it's mainly useful for making debugging functions accessible to scripts or other programs that run scripts.
(
id() {
"$@"
}
export -f id
exec bash -c 'echowrap() { echo "$1"; }; id echowrap hi'
)
id still only gets a string that happens to be the name of a function (automatically imported from a serialization in the environment) and its args.
Pumbaa80's comment to another answer is also good (eval $(declare -F "$1")), but its mainly useful for arrays, not functions, since they're always global. If you were to run this within a function all it would do is redefine it, so there's no effect. It can't be used to create closures or partial functions or "function instances" dependent on whatever happens to be bound in the current scope. At best this can be used to store a function definition in a string which gets redefined elsewhere - but those functions also can only be hardcoded unless of course eval is used
I don't think anyone quite answered the question. He didn't ask if he could echo strings in order. Rather the author of the question wants to know if he can simulate function pointer behavior.
There are a couple of answers that are much like what I'd do, and I want to expand it with another example.
From the author:
function x() {
echo "Hello world"
}
function around() {
echo "before"
($1) <------ Only change
echo "after"
}
around x
To expand this, we will have function x echo "Hello world:$1" to show when the function execution really occurs. We will pass a string that is the name of the function "x":
function x() {
echo "Hello world:$1"
}
function around() {
echo "before"
($1 HERE) <------ Only change
echo "after"
}
around x
To describe this, the string "x" is passed to the function around() which echos "before", calls the function x (via the variable $1, the first parameter passed to around) passing the argument "HERE", finally echos after.
As another aside, this is the methodology to use variables as function names. The variables actually hold the string that is the name of the function and ($variable arg1 arg2 ...) calls the function passing the arguments. See below:
function x(){
echo $3 $1 $2 <== just rearrange the order of passed params
}
Z="x" # or just Z=x
($Z 10 20 30)
gives: 30 10 20, where we executed the function named "x" stored in variable Z and passed parameters 10 20 and 30.
Above where we reference functions by assigning variable names to the functions so we can use the variable in place of actually knowing the function name (which is similar to what you might do in a very classic function pointer situation in c for generalizing program flow but pre-selecting the function calls you will be making based on command line arguments).
In bash these are not function pointers, but variables that refer to names of functions that you later use.