有办法在 Matplotlib 建立一个不连续的轴吗?

我试着用一个不连续的 x 轴绘制一个曲线图。通常的绘制方法是这样的:

(值)——//——(稍后的值)

其中//表示在(值)和(后面的值)之间跳过所有内容。

我还没能找到这方面的任何例子,所以我想知道这是否可能。我知道你可以在不连续的数据上连接数据,例如,金融数据,但我想使轴的跳跃更加明确。目前,我只是使用次要情节,但我真的希望有一切结束在同一个图的最后。

45969 次浏览

I see many suggestions for this feature but no indication that it's been implemented. Here is a workable solution for the time-being. It applies a step-function transform to the x-axis. It's a lot of code, but it's fairly simple since most of it is boilerplate custom scale stuff. I have not added any graphics to indicate the location of the break, since that is a matter of style. Good luck finishing the job.

from matplotlib import pyplot as plt
from matplotlib import scale as mscale
from matplotlib import transforms as mtransforms
import numpy as np


def CustomScaleFactory(l, u):
class CustomScale(mscale.ScaleBase):
name = 'custom'


def __init__(self, axis, **kwargs):
mscale.ScaleBase.__init__(self)
self.thresh = None #thresh


def get_transform(self):
return self.CustomTransform(self.thresh)


def set_default_locators_and_formatters(self, axis):
pass


class CustomTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
lower = l
upper = u
def __init__(self, thresh):
mtransforms.Transform.__init__(self)
self.thresh = thresh


def transform(self, a):
aa = a.copy()
aa[a>self.lower] = a[a>self.lower]-(self.upper-self.lower)
aa[(a>self.lower)&(a<self.upper)] = self.lower
return aa


def inverted(self):
return CustomScale.InvertedCustomTransform(self.thresh)


class InvertedCustomTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
lower = l
upper = u


def __init__(self, thresh):
mtransforms.Transform.__init__(self)
self.thresh = thresh


def transform(self, a):
aa = a.copy()
aa[a>self.lower] = a[a>self.lower]+(self.upper-self.lower)
return aa


def inverted(self):
return CustomScale.CustomTransform(self.thresh)


return CustomScale


mscale.register_scale(CustomScaleFactory(1.12, 8.88))


x = np.concatenate((np.linspace(0,1,10), np.linspace(9,10,10)))
xticks = np.concatenate((np.linspace(0,1,6), np.linspace(9,10,6)))
y = np.sin(x)
plt.plot(x, y, '.')
ax = plt.gca()
ax.set_xscale('custom')
ax.set_xticks(xticks)
plt.show()

enter image description here

Paul's answer is a perfectly fine method of doing this.

However, if you don't want to make a custom transform, you can just use two subplots to create the same effect.

Rather than put together an example from scratch, there's an excellent example of this written by Paul Ivanov in the matplotlib examples (It's only in the current git tip, as it was only committed a few months ago. It's not on the webpage yet.).

This is just a simple modification of this example to have a discontinuous x-axis instead of the y-axis. (Which is why I'm making this post a CW)

Basically, you just do something like this:

import matplotlib.pylab as plt
import numpy as np


# If you're not familiar with np.r_, don't worry too much about this. It's just
# a series with points from 0 to 1 spaced at 0.1, and 9 to 10 with the same spacing.
x = np.r_[0:1:0.1, 9:10:0.1]
y = np.sin(x)


fig,(ax,ax2) = plt.subplots(1, 2, sharey=True)


# plot the same data on both axes
ax.plot(x, y, 'bo')
ax2.plot(x, y, 'bo')


# zoom-in / limit the view to different portions of the data
ax.set_xlim(0,1) # most of the data
ax2.set_xlim(9,10) # outliers only


# hide the spines between ax and ax2
ax.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax.yaxis.tick_left()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.yaxis.tick_right()


# Make the spacing between the two axes a bit smaller
plt.subplots_adjust(wspace=0.15)


plt.show()

enter image description here

To add the broken axis lines // effect, we can do this (again, modified from Paul Ivanov's example):

import matplotlib.pylab as plt
import numpy as np


# If you're not familiar with np.r_, don't worry too much about this. It's just
# a series with points from 0 to 1 spaced at 0.1, and 9 to 10 with the same spacing.
x = np.r_[0:1:0.1, 9:10:0.1]
y = np.sin(x)


fig,(ax,ax2) = plt.subplots(1, 2, sharey=True)


# plot the same data on both axes
ax.plot(x, y, 'bo')
ax2.plot(x, y, 'bo')


# zoom-in / limit the view to different portions of the data
ax.set_xlim(0,1) # most of the data
ax2.set_xlim(9,10) # outliers only


# hide the spines between ax and ax2
ax.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax.yaxis.tick_left()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.yaxis.tick_right()


# Make the spacing between the two axes a bit smaller
plt.subplots_adjust(wspace=0.15)


# This looks pretty good, and was fairly painless, but you can get that
# cut-out diagonal lines look with just a bit more work. The important
# thing to know here is that in axes coordinates, which are always
# between 0-1, spine endpoints are at these locations (0,0), (0,1),
# (1,0), and (1,1). Thus, we just need to put the diagonals in the
# appropriate corners of each of our axes, and so long as we use the
# right transform and disable clipping.


d = .015 # how big to make the diagonal lines in axes coordinates
# arguments to pass plot, just so we don't keep repeating them
kwargs = dict(transform=ax.transAxes, color='k', clip_on=False)
ax.plot((1-d,1+d),(-d,+d), **kwargs) # top-left diagonal
ax.plot((1-d,1+d),(1-d,1+d), **kwargs) # bottom-left diagonal


kwargs.update(transform=ax2.transAxes) # switch to the bottom axes
ax2.plot((-d,d),(-d,+d), **kwargs) # top-right diagonal
ax2.plot((-d,d),(1-d,1+d), **kwargs) # bottom-right diagonal


# What's cool about this is that now if we vary the distance between
# ax and ax2 via f.subplots_adjust(hspace=...) or plt.subplot_tool(),
# the diagonal lines will move accordingly, and stay right at the tips
# of the spines they are 'breaking'


plt.show()

enter image description here

Adressing Frederick Nord's question how to enable parallel orientation of the diagonal "breaking" lines when using a gridspec with ratios unequal 1:1, the following changes based on the proposals of Paul Ivanov and Joe Kingtons may be helpful. Width ratio can be varied using variables n and m.

import matplotlib.pylab as plt
import numpy as np
import matplotlib.gridspec as gridspec


x = np.r_[0:1:0.1, 9:10:0.1]
y = np.sin(x)


n = 5; m = 1;
gs = gridspec.GridSpec(1,2, width_ratios = [n,m])


plt.figure(figsize=(10,8))


ax = plt.subplot(gs[0,0])
ax2 = plt.subplot(gs[0,1], sharey = ax)
plt.setp(ax2.get_yticklabels(), visible=False)
plt.subplots_adjust(wspace = 0.1)


ax.plot(x, y, 'bo')
ax2.plot(x, y, 'bo')


ax.set_xlim(0,1)
ax2.set_xlim(10,8)


# hide the spines between ax and ax2
ax.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax.yaxis.tick_left()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.yaxis.tick_right()


d = .015 # how big to make the diagonal lines in axes coordinates
# arguments to pass plot, just so we don't keep repeating them
kwargs = dict(transform=ax.transAxes, color='k', clip_on=False)


on = (n+m)/n; om = (n+m)/m;
ax.plot((1-d*on,1+d*on),(-d,d), **kwargs) # bottom-left diagonal
ax.plot((1-d*on,1+d*on),(1-d,1+d), **kwargs) # top-left diagonal
kwargs.update(transform=ax2.transAxes) # switch to the bottom axes
ax2.plot((-d*om,d*om),(-d,d), **kwargs) # bottom-right diagonal
ax2.plot((-d*om,d*om),(1-d,1+d), **kwargs) # top-right diagonal


plt.show()

Check the brokenaxes package:

import matplotlib.pyplot as plt
from brokenaxes import brokenaxes
import numpy as np


fig = plt.figure(figsize=(5,2))
bax = brokenaxes(
xlims=((0, .1), (.4, .7)),
ylims=((-1, .7), (.79, 1)),
hspace=.05
)
x = np.linspace(0, 1, 100)
bax.plot(x, np.sin(10 * x), label='sin')
bax.plot(x, np.cos(10 * x), label='cos')
bax.legend(loc=3)
bax.set_xlabel('time')
bax.set_ylabel('value')

example from brokenaxes

For those interested, I've expanded upon @Paul's answer and added it to the matplotlib wrapper proplot. It can do axis "jumps", "speedups", and "slowdowns".

There is no way currently to add "crosses" that indicate the discrete jump like in Joe's answer, but I plan to add this in the future. I also plan to add a default "tick locator" that sets sensible default tick locations depending on the CutoffScale arguments.

A very simple hack is to

  1. scatter plot rectangles over the axes' spines and
  2. draw the "//" as text at that position.

Worked like a charm for me:

# FAKE BROKEN AXES
# plot a white rectangle on the x-axis-spine to "break" it
xpos = 10 # x position of the "break"
ypos = plt.gca().get_ylim()[0] # y position of the "break"
plt.scatter(xpos, ypos, color='white', marker='s', s=80, clip_on=False, zorder=100)
# draw "//" on the same place as text
plt.text(xpos, ymin-0.125, r'//', fontsize=label_size, zorder=101, horizontalalignment='center', verticalalignment='center')

Example Plot: faking a broken/discontinuous axis in matplotlib python

This is a hacky but pretty solution for x-axis breaks.

The solution is based on https://matplotlib.org/stable/gallery/subplots_axes_and_figures/broken_axis.html, which gets rid of the problem with positioning the break above the spine, solved by How can I plot points so they appear over top of the spines with matplotlib?

from matplotlib.patches import Rectangle
import matplotlib.pyplot as plt


def axis_break(axis, xpos=[0.1, 0.125], slant=1.5):
d = slant  # proportion of vertical to horizontal extent of the slanted line
anchor = (xpos[0], -1)
w = xpos[1] - xpos[0]
h = 1


kwargs = dict(marker=[(-1, -d), (1, d)], markersize=12, zorder=3,
linestyle="none", color='k', mec='k', mew=1, clip_on=False)
axis.add_patch(Rectangle(
anchor, w, h, fill=True, color="white",
transform=axis.transAxes, clip_on=False, zorder=3)
)
axis.plot(xpos, [0, 0], transform=axis.transAxes, **kwargs)


fig, ax = plt.subplots(1,1)
plt.plot(np.arange(10))
axis_break(ax, xpos=[0.1, 0.12], slant=1.5)
axis_break(ax, xpos=[0.3, 0.31], slant=-10)

axis break pyplot

if you want to replace an axis label, this would do the trick:

from matplotlib import ticker


def replace_pos_with_label(fig, pos, label, axis):
fig.canvas.draw()  # this is needed to set up the x-ticks
labs = axis.get_xticklabels()
labels = []
locs = []
for text in labs:
x = text._x
lab = text._text


if x == pos:
lab = label


labels.append(lab)
locs.append(x)
        

axis.xaxis.set_major_locator(ticker.FixedLocator(locs))
axis.set_xticklabels(labels)


fig, ax = plt.subplots(1,1)
plt.plot(np.arange(10))
replace_pos_with_label(fig, 0, "-10", axis=ax)
replace_pos_with_label(fig, 6, "$10^{4}$", axis=ax)
axis_break(ax, xpos=[0.1, 0.12], slant=2)

broken axisi with new labels