No, they aren't (or at least you can't assume they are). Having said that, there are some tricks to do this atomically, but they typically aren't portable (see Compare-and-swap).
Yes, you need to synchronize accesses. In C++0x it will be a data race, and undefined behaviour. With POSIX threads it's already undefined behaviour.
In practice, you might get bad values if the data type is larger than the native word size. Also, another thread might never see the value written due to optimizations moving the read and/or write.
It all comes down to the architecture of the system. On an IA32 a correctly aligned address will be an atomic operation. Unaligned writes might be atomic, it depends on the caching system in use. If the memory lies within a single L1 cache line then it is atomic, otherwise it's not. The width of the bus between the CPU and RAM can affect the atomic nature: a correctly aligned 16bit write on an 8086 was atomic whereas the same write on an 8088 wasn't because the 8088 only had an 8 bit bus whereas the 8086 had a 16 bit bus.
Also, if you're using C/C++ don't forget to mark the shared value as volatile, otherwise the optimiser will think the variable is never updated in one of your threads.
At first one might think that reads and writes of the native machine size are atomic but there are a number of issues to deal with including cache coherency between processors/cores. Use atomic operations like Interlocked* on Windows and the equivalent on Linux. C++0x will have an "atomic" template to wrap these in a nice and cross-platform interface. For now if you are using a platform abstraction layer it may provide these functions. ACE does, see the class template ACE_Atomic_Op.
To echo what everyone said upstairs, the language pre-C++0x cannot guarantee anything about shared memory access from multiple threads. Any guarantees would be up to the compiler.
The only portable way is to use the sig_atomic_t type defined in signal.h header for your compiler. In most C and C++ implementations, that is an int. Then declare your variable as "volatile sig_atomic_t."
The first statement is assumed to be atomic because it translates to a single INC assembly directive that takes a single CPU cycle. However, the second assignment requires several operations so it's clearly not an atomic operation.
Another e.g,
x=5;
Again, you have to disassemble the code to see what exactly happens here.
I think the moment you use a constant ( like 6) , the instruction wouldn't be completed in one machine cycle.
Try to see the instruction set of x+=6 as compared to x++
Reads and writes are atomic, but you also need to worry about the compiler re-ordering your code. Compiler optimizations may violate happens-before relationship of statements in your code. By using atomic you don't have to worry about that.
...
atomic i;
soap_status = GOT_RESPONSE ;
i = 1
In the above example, the variable 'i' will only be set to 1 after we get a soap response.