我有一个数据框:
0 name data 1 alex asd 2 helen sdd 3 alex dss 4 helen sdsd 5 john sdadd
因此,我尝试获取 < strong > < em > 最常见的值或值(在本例中是它的值) 所以我要做的是:
dataframe['name'].value_counts().idxmax()
但是它只返回值: 亚历克斯,即使 海伦也出现两次。
Here's one way:
df['name'].value_counts()[df['name'].value_counts() == df['name'].value_counts().max()]
which prints:
helen 2 alex 2 Name: name, dtype: int64
By using mode
mode
df.name.mode() Out[712]: 0 alex 1 helen dtype: object
You could use .apply and pd.value_counts to get a count the occurrence of all the names in the name column.
dataframe['name'].apply(pd.value_counts)
Not Obvious, But Fast
f, u = pd.factorize(df.name.values) counts = np.bincount(f) u[counts == counts.max()] array(['alex', 'helen'], dtype=object)
You could try argmax like this:
argmax
dataframe['name'].value_counts().argmax() Out[13]: 'alex'
The value_counts will return a count object of pandas.core.series.Series and argmax could be used to achieve the key of max values.
value_counts
pandas.core.series.Series
You can use this to get a perfect count, it calculates the mode a particular column
df['name'].value_counts()
To get the n most frequent values, just subset .value_counts() and grab the index:
n
.value_counts()
# get top 10 most frequent names n = 10 dataframe['name'].value_counts()[:n].index.tolist()
to get top 5:
dataframe['name'].value_counts()[0:5]
To get the top five most common names:
dataframe['name'].value_counts().head()
df['name'].value_counts()[:5].sort_values(ascending=False)
The value_counts will return a count object of pandas.core.series.Series and sort_values(ascending=False) will get you the highest values first.
sort_values(ascending=False)
my best solution to get the first is
df['my_column'].value_counts().sort_values(ascending=False).argmax()
Simply use this..
dataframe['name'].value_counts().nlargest(n)
The functions for frequencies largest and smallest are:
nlargest()
nsmallest()
Use:
df['name'].mode()
or
df['name'].value_counts().idxmax()
n = 2 a=dataframe['name'].value_counts()[:n].index.tolist() dataframe["name"].value_counts()[a]
I had a similar issue best most compact answer to get lets say the top n (5 is default) most frequent values is:
df["column_name"].value_counts().head(n)
Identifying the top 5, for example, using value_counts
top5 = df['column'].value_counts()
Listing contents of 'top_5'
top5[:5]
Getting top 5 most common lastname pandas:
df['name'].apply(lambda name: name.split()[-1]).value_counts()[:5]
It will give top five most common names:
df['name'].value_counts().nlargest(5)