在 dplyr: : filter 中将字符串作为变量名传递

我使用 mtcar 数据集来说明我的问题。

For example, I want to subset data to 4-cyl cars.I can do:

mtcars %>% filter(cyl == 4)

In my work, I need to pass a string variable as my column name. For example:

var <- 'cyl'
mtcars %>% filter(var == 4)

我也这么做了:

mtcars %>% filter(!!var == 4)

在这两种情况下,我得到了空的数据帧。

64266 次浏览

!! or UQ evaluates the variable, so mtcars %>% filter(!!var == 4) is the same as mtcars %>% filter('cyl' == 4) where the condition always evaluates to false; You can prove this by printing !!var in the filter function:

mtcars %>% filter({ print(!!var); (!!var) == 4 })
# [1] "cyl"
#  [1] mpg  cyl  disp hp   drat wt   qsec vs   am   gear carb
# <0 rows> (or 0-length row.names)

要将 var计算为 cyl列,您需要首先将 var转换为 cyl的符号,然后将该符号 cyl计算为一列:

使用 rlang:

library(rlang)
var <- 'cyl'
mtcars %>% filter((!!sym(var)) == 4)


#    mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#1  22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#2  24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#3  22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
# ...

或者使用来自 baseR 的 as.symbol/as.name:

mtcars %>% filter((!!as.symbol(var)) == 4)


mtcars %>% filter((!!as.name(var)) == 4)

可以使用 Eval (解析(文本 = 将字符串作为变量计算:

mtcars %>% filter(eval(parse(text='cyl')) == 4)

enter image description here

我认为@snoam 的回答很优雅,而且完全依赖于 dplyr

var <- c('cyl')
mtcars %>% filter(get(var) == 4)

您还可以将其与列表一起使用。对于一个简单的示例,可以将每个筛选列作为新数据集进行计数。

#adding car name
mtcars <- rownames_to_column(mtcars, "car_name")


#name your vectors
vector <- c("vs","am","carb")


df2 <- data.frame()
for (variable in vector) {
df1 <- mtcars %>% filter(get(variable) == 1) %>% summarise(variable = n_distinct(car_name)) %>% data.frame()


df2<- rbind(df2,df1)
}

现在建议使用 .data代词:

library(dplyr)


mtcars %>% filter(.data[[var]] == 4)


#                mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#Datsun 710     22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#Merc 240D      24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#Merc 230       22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#Fiat 128       32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#Honda Civic    30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#Toyota Corolla 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#Toyota Corona  21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
#Fiat X1-9      27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#Porsche 914-2  26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#Lotus Europa   30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#Volvo 142E     21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2