如何改变颜色的轴,勾和标签的情节在 matplotlib

我想更改轴的颜色,以及使用 matplotlib 和 PyQt 绘制的图的刻度和值标签。

有什么想法吗?

260379 次浏览

作为一个简单的例子(使用一个比潜在重复问题稍微干净一点的方法) :

import matplotlib.pyplot as plt


fig = plt.figure()
ax = fig.add_subplot(111)


ax.plot(range(10))
ax.set_xlabel('X-axis')
ax.set_ylabel('Y-axis')


ax.spines['bottom'].set_color('red')
ax.spines['top'].set_color('red')
ax.xaxis.label.set_color('red')
ax.tick_params(axis='x', colors='red')


plt.show()

alt text

或者

[t.set_color('red') for t in ax.xaxis.get_ticklines()]
[t.set_color('red') for t in ax.xaxis.get_ticklabels()]

如果您有几个数字或子图,您想要修改,它可以有助于使用 Matplotlib 上下文管理器来改变颜色,而不是改变每一个单独。上下文管理器只允许您为紧接着的缩进代码临时更改 rc 参数,但不影响全局 rc 参数。

这个代码片段生成两个图形,第一个图形修改了轴的颜色、刻度和标签,第二个图形使用默认的 rc 参数。

import matplotlib.pyplot as plt
with plt.rc_context({'axes.edgecolor':'orange', 'xtick.color':'red', 'ytick.color':'green', 'figure.facecolor':'white'}):
# Temporary rc parameters in effect
fig, (ax1, ax2) = plt.subplots(1,2)
ax1.plot(range(10))
ax2.plot(range(10))
# Back to default rc parameters
fig, ax = plt.subplots()
ax.plot(range(10))

enter image description here

enter image description here

你可以输入 plt.rcParams来查看所有可用的 rc 参数,并使用列表内涵来搜索关键字:

# Search for all parameters containing the word 'color'
[(param, value) for param, value in plt.rcParams.items() if 'color' in param]

由以前的贡献者激发,这是三个轴的一个例子。

import matplotlib.pyplot as plt


x_values1=[1,2,3,4,5]
y_values1=[1,2,2,4,1]


x_values2=[-1000,-800,-600,-400,-200]
y_values2=[10,20,39,40,50]


x_values3=[150,200,250,300,350]
y_values3=[-10,-20,-30,-40,-50]




fig=plt.figure()
ax=fig.add_subplot(111, label="1")
ax2=fig.add_subplot(111, label="2", frame_on=False)
ax3=fig.add_subplot(111, label="3", frame_on=False)


ax.plot(x_values1, y_values1, color="C0")
ax.set_xlabel("x label 1", color="C0")
ax.set_ylabel("y label 1", color="C0")
ax.tick_params(axis='x', colors="C0")
ax.tick_params(axis='y', colors="C0")


ax2.scatter(x_values2, y_values2, color="C1")
ax2.set_xlabel('x label 2', color="C1")
ax2.xaxis.set_label_position('bottom') # set the position of the second x-axis to bottom
ax2.spines['bottom'].set_position(('outward', 36))
ax2.tick_params(axis='x', colors="C1")
ax2.set_ylabel('y label 2', color="C1")
ax2.yaxis.tick_right()
ax2.yaxis.set_label_position('right')
ax2.tick_params(axis='y', colors="C1")


ax3.plot(x_values3, y_values3, color="C2")
ax3.set_xlabel('x label 3', color='C2')
ax3.xaxis.set_label_position('bottom')
ax3.spines['bottom'].set_position(('outward', 72))
ax3.tick_params(axis='x', colors='C2')
ax3.set_ylabel('y label 3', color='C2')
ax3.yaxis.tick_right()
ax3.yaxis.set_label_position('right')
ax3.spines['right'].set_position(('outward', 36))
ax3.tick_params(axis='y', colors='C2')




plt.show()
  • 对于那些使用 pandas.DataFrame.plot()的用户,当从数据帧创建一个绘图时返回 matplotlib.axes.Axes。因此,可以将数据框图分配给一个变量 ax,该变量允许使用关联的格式化方法。
  • pandas的默认绘图后端是 matplotlib
  • matplotlib.spines
  • 测试 python 3.10pandas 1.4.2matplotlib 3.5.1seaborn 0.11.2
import pandas as pd


# test dataframe
data = {'a': range(20), 'date': pd.bdate_range('2021-01-09', freq='D', periods=20)}
df = pd.DataFrame(data)


# plot the dataframe and assign the returned axes
ax = df.plot(x='date', color='green', ylabel='values', xlabel='date', figsize=(8, 6))


# set various colors
ax.spines['bottom'].set_color('blue')
ax.spines['top'].set_color('red')
ax.spines['right'].set_color('magenta')
ax.spines['right'].set_linewidth(3)
ax.spines['left'].set_color('orange')
ax.spines['left'].set_lw(3)
ax.xaxis.label.set_color('purple')
ax.yaxis.label.set_color('silver')
ax.tick_params(colors='red', which='both')  # 'both' refers to minor and major axes

enter image description here

海运轴线平面图

import seaborn as sns


# plot the dataframe and assign the returned axes
fig, ax = plt.subplots(figsize=(12, 5))
g = sns.lineplot(data=df, x='date', y='a', color='g', label='a', ax=ax)


# set the margines to 0
ax.margins(x=0, y=0)


# set various colors
ax.spines['bottom'].set_color('blue')
ax.spines['top'].set_color('red')
ax.spines['right'].set_color('magenta')
ax.spines['right'].set_linewidth(3)
ax.spines['left'].set_color('orange')
ax.spines['left'].set_lw(3)
ax.xaxis.label.set_color('purple')
ax.yaxis.label.set_color('silver')
ax.tick_params(colors='red', which='both')  # 'both' refers to minor and major axes

enter image description here

海运数字水平图

# plot the dataframe and assign the returned axes
g = sns.relplot(kind='line', data=df, x='date', y='a', color='g', aspect=2)


# iterate through each axes
for ax in g.axes.flat:


# set the margins to 0
ax.margins(x=0, y=0)
    

# make the top and right spines visible
ax.spines[['top', 'right']].set_visible(True)


# set various colors
ax.spines['bottom'].set_color('blue')
ax.spines['top'].set_color('red')
ax.spines['right'].set_color('magenta')
ax.spines['right'].set_linewidth(3)
ax.spines['left'].set_color('orange')
ax.spines['left'].set_lw(3)
ax.xaxis.label.set_color('purple')
ax.yaxis.label.set_color('silver')
ax.tick_params(colors='red', which='both')  # 'both' refers to minor and major axes

enter image description here

下面是一个实用程序函数,它使用带有必要参数的绘图函数,并使用所需的背景颜色样式绘制图形。您可以根据需要添加更多参数。

def plotfigure(plot_fn, fig, background_col = 'xkcd:black', face_col = (0.06,0.06,0.06)):
"""
Plot Figure using plt plot functions.


Customize different background and face-colors of the plot.


Parameters:
plot_fn (func): The plot functions with necessary arguments as a lamdda function.
fig : The Figure object by plt.figure()
background_col: The background color of the plot. Supports matlplotlib colors
face_col: The face color of the plot. Supports matlplotlib colors




Returns:
void


"""
fig.patch.set_facecolor(background_col)
plot_fn()
ax = plt.gca()
ax.set_facecolor(face_col)
ax.spines['bottom'].set_color('white')
ax.spines['top'].set_color('white')
ax.spines['left'].set_color('white')
ax.spines['right'].set_color('white')
ax.xaxis.label.set_color('white')
ax.yaxis.label.set_color('white')
ax.grid(alpha=0.1)
ax.title.set_color('white')
ax.tick_params(axis='x', colors='white')
ax.tick_params(axis='y', colors='white')

下面定义了一个用例

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split


X, y = make_classification(n_samples=50, n_classes=2, n_features=5, random_state=27)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=27)
fig=plt.figure()


plotfigure(lambda: plt.scatter(range(0,len(y)), y, marker=".",c="orange"), fig)

The Figure Output

您还可以使用它在同一个图形中绘制多个图形,并使用相同的调色板设置它们的样式。

下面给出一个例子

fig = plt.figure()
# Plot ROC curves
plotfigure(lambda: plt.plot(fpr1, tpr1, linestyle='--',color='orange', label='Logistic Regression'), fig)
plotfigure(lambda: plt.plot(fpr2, tpr2, linestyle='--',color='green', label='KNN'), fig)
plotfigure(lambda: plt.plot(p_fpr, p_tpr, linestyle='-', color='blue'), fig)
# Title
plt.title('ROC curve')
# X label
plt.xlabel('False Positive Rate')
# Y label
plt.ylabel('True Positive rate')


plt.legend(loc='best',labelcolor='white')
plt.savefig('ROC',dpi=300)


plt.show();

产出: ROC Curve