四舍五入到下一个2的幂

我想写一个函数,返回最接近的2的次幂数。例如,如果我的输入是789,输出应该是1024。有没有办法不使用任何循环,而只是使用一些位运算符?

261768 次浏览

检查Bit Twiddling Hacks。你需要得到以2为底的对数,然后加上1。32位值的示例:

四舍五入到下一个2的最高次幂

unsigned int v; // compute the next highest power of 2 of 32-bit v


v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;

延伸到其他宽度应该是明显的。

next = pow(2, ceil(log(x)/log(2)));

它的工作原理是找到你要用2乘以x的数字(取这个数字的对数,然后除以想要的底的对数,详见维基百科)。然后把它四舍五入,得到最接近的整数幂。

这是一个比其他地方链接的按位方法更通用的方法(即更慢!),但很好地了解数学,不是吗?

unsigned long upper_power_of_two(unsigned long v)
{
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
return v;


}

如果你需要OpenGL相关的东西:

/* Compute the nearest power of 2 number that is
* less than or equal to the value passed in.
*/
static GLuint
nearestPower( GLuint value )
{
int i = 1;


if (value == 0) return -1;      /* Error! */
for (;;) {
if (value == 1) return i;
else if (value == 3) return i*4;
value >>= 1; i *= 2;
}
}

对于IEEE浮点,你可以这样做。

int next_power_of_two(float a_F){
int f = *(int*)&a_F;
int b = f << 9 != 0; // If we're a power of two this is 0, otherwise this is 1


f >>= 23; // remove factional part of floating point number
f -= 127; // subtract 127 (the bias) from the exponent


// adds one to the exponent if were not a power of two,
// then raises our new exponent to the power of two again.
return (1 << (f + b));
}

如果你需要一个整数的解决方案,并且你能够使用内联汇编,BSR会在x86上给你一个整数的log2。它计算有多少位是正确的,这正好等于这个数字的log2。其他处理器(通常)有类似的指令,比如CLZ,根据你的编译器,可能有一个内在的可用指令来为你做这项工作。

如果你正在使用GCC,你可能想要看看Lockless Inc.的优化next_pow2()函数 ..本页描述了一种使用内置函数builtin_clz()(计数前导零),然后直接使用x86 (ia32)汇编指令bsr(位扫描反向)的方法,就像另一个答案链接到游戏开发站点中描述的那样。此代码可能比以前的回答中描述的更快。

顺便说一下,如果你不打算使用汇编指令和64位数据类型,你可以使用这个

/**
* return the smallest power of two value
* greater than x
*
* Input range:  [2..2147483648]
* Output range: [2..2147483648]
*
*/
__attribute__ ((const))
static inline uint32_t p2(uint32_t x)
{
#if 0
assert(x > 1);
assert(x <= ((UINT32_MAX/2) + 1));
#endif


return 1 << (32 - __builtin_clz (x - 1));
}

我认为这也是可行的:

int power = 1;
while(power < x)
power*=2;

答案是power

许多处理器架构都支持log base 2或非常类似的操作——count leading zeros。许多编译器都有针对它的内在特性。看到https://en.wikipedia.org/wiki/Find_first_set

/*
** http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog
*/
#define __LOG2A(s) ((s &0xffffffff00000000) ? (32 +__LOG2B(s >>32)): (__LOG2B(s)))
#define __LOG2B(s) ((s &0xffff0000)         ? (16 +__LOG2C(s >>16)): (__LOG2C(s)))
#define __LOG2C(s) ((s &0xff00)             ? (8  +__LOG2D(s >>8)) : (__LOG2D(s)))
#define __LOG2D(s) ((s &0xf0)               ? (4  +__LOG2E(s >>4)) : (__LOG2E(s)))
#define __LOG2E(s) ((s &0xc)                ? (2  +__LOG2F(s >>2)) : (__LOG2F(s)))
#define __LOG2F(s) ((s &0x2)                ? (1)                  : (0))


#define LOG2_UINT64 __LOG2A
#define LOG2_UINT32 __LOG2B
#define LOG2_UINT16 __LOG2C
#define LOG2_UINT8  __LOG2D


static inline uint64_t
next_power_of_2(uint64_t i)
{
#if defined(__GNUC__)
return 1UL <<(1 +(63 -__builtin_clzl(i -1)));
#else
i =i -1;
i =LOG2_UINT64(i);
return 1UL <<(1 +i);
#endif
}

如果你不想冒险进入未定义行为的领域,输入值必须在1到2^63之间。宏在编译时设置常量也很有用。

为了完整起见,这里是用标准C语言实现的浮点数。

double next_power_of_two(double value) {
int exp;
if(frexp(value, &exp) == 0.5) {
// Omit this case to round precise powers of two up to the *next* power
return value;
}
return ldexp(1.0, exp);
}

还有一个,虽然我用的是循环,但这比数学操作数要快得多

功率两“地板”选项:

int power = 1;
while (x >>= 1) power <<= 1;

两个“ceil”选项的力量:

int power = 2;
x--;    // <<-- UPDATED
while (x >>= 1) power <<= 1;

更新

正如在评论中提到的,ceil中有错误,其结果是错误的。

以下是全部功能:

unsigned power_floor(unsigned x) {
int power = 1;
while (x >>= 1) power <<= 1;
return power;
}


unsigned power_ceil(unsigned x) {
if (x <= 1) return 1;
int power = 2;
x--;
while (x >>= 1) power <<= 1;
return power;
}

对于任何unsigned类型,构建在Bit Twiddling Hacks上:

#include <climits>
#include <type_traits>


template <typename UnsignedType>
UnsignedType round_up_to_power_of_2(UnsignedType v) {
static_assert(std::is_unsigned<UnsignedType>::value, "Only works for unsigned types");
v--;
for (size_t i = 1; i < sizeof(v) * CHAR_BIT; i *= 2) //Prefer size_t "Warning comparison between signed and unsigned integer"
{
v |= v >> i;
}
return ++v;
}

这里并没有真正的循环,因为编译器在编译时知道迭代的次数。

在x86中,你可以使用sse4位操作指令来提高速度。

//assume input is in eax
mov    ecx,31
popcnt edx,eax   //cycle 1
lzcnt  eax,eax   //cycle 2
sub    ecx,eax
mov    eax,1
cmp    edx,1     //cycle 3
jle @done        //cycle 4 - popcnt says its a power of 2, return input unchanged
shl    eax,cl    //cycle 5
@done: rep ret   //cycle 5

在c中,您可以使用匹配的intrinsic。

或者无跳转,通过避免跳转导致的错误预测来加快速度,但通过延长依赖链来减慢速度。计时,看看哪种代码最适合您。

//assume input is in eax
mov    ecx,31
popcnt edx,eax    //cycle 1
lzcnt  eax,eax
sub    ecx,eax
mov    eax,1      //cycle 2
cmp    edx,1
mov    edx,0     //cycle 3
cmovle ecx,edx   //cycle 4 - ensure eax does not change
shl    eax,cl
@done: rep ret   //cycle 5

假设你有一个好的编译器&它可以做的bit twiddling手以上的我在这一点上,但无论如何,这工作!!

    // http://graphics.stanford.edu/~seander/bithacks.html#IntegerLogObvious
#define SH1(v)  ((v-1) | ((v-1) >> 1))            // accidently came up w/ this...
#define SH2(v)  ((v) | ((v) >> 2))
#define SH4(v)  ((v) | ((v) >> 4))
#define SH8(v)  ((v) | ((v) >> 8))
#define SH16(v) ((v) | ((v) >> 16))
#define OP(v) (SH16(SH8(SH4(SH2(SH1(v))))))


#define CB0(v)   ((v) - (((v) >> 1) & 0x55555555))
#define CB1(v)   (((v) & 0x33333333) + (((v) >> 2) & 0x33333333))
#define CB2(v)   ((((v) + ((v) >> 4) & 0xF0F0F0F) * 0x1010101) >> 24)
#define CBSET(v) (CB2(CB1(CB0((v)))))
#define FLOG2(v) (CBSET(OP(v)))

测试代码如下:

#include <iostream>


using namespace std;


// http://graphics.stanford.edu/~seander/bithacks.html#IntegerLogObvious
#define SH1(v)  ((v-1) | ((v-1) >> 1))  // accidently guess this...
#define SH2(v)  ((v) | ((v) >> 2))
#define SH4(v)  ((v) | ((v) >> 4))
#define SH8(v)  ((v) | ((v) >> 8))
#define SH16(v) ((v) | ((v) >> 16))
#define OP(v) (SH16(SH8(SH4(SH2(SH1(v))))))


#define CB0(v)   ((v) - (((v) >> 1) & 0x55555555))
#define CB1(v)   (((v) & 0x33333333) + (((v) >> 2) & 0x33333333))
#define CB2(v)   ((((v) + ((v) >> 4) & 0xF0F0F0F) * 0x1010101) >> 24)
#define CBSET(v) (CB2(CB1(CB0((v)))))
#define FLOG2(v) (CBSET(OP(v)))


#define SZ4         FLOG2(4)
#define SZ6         FLOG2(6)
#define SZ7         FLOG2(7)
#define SZ8         FLOG2(8)
#define SZ9         FLOG2(9)
#define SZ16        FLOG2(16)
#define SZ17        FLOG2(17)
#define SZ127       FLOG2(127)
#define SZ1023      FLOG2(1023)
#define SZ1024      FLOG2(1024)
#define SZ2_17      FLOG2((1ul << 17))  //
#define SZ_LOG2     FLOG2(SZ)


#define DBG_PRINT(x) do { std::printf("Line:%-4d" "  %10s = %-10d\n", __LINE__, #x, x); } while(0);


uint32_t arrTble[FLOG2(63)];


int main(){
int8_t n;


DBG_PRINT(SZ4);
DBG_PRINT(SZ6);
DBG_PRINT(SZ7);
DBG_PRINT(SZ8);
DBG_PRINT(SZ9);
DBG_PRINT(SZ16);
DBG_PRINT(SZ17);
DBG_PRINT(SZ127);
DBG_PRINT(SZ1023);
DBG_PRINT(SZ1024);
DBG_PRINT(SZ2_17);


return(0);
}

输出:

Line:39           SZ4 = 2
Line:40           SZ6 = 3
Line:41           SZ7 = 3
Line:42           SZ8 = 3
Line:43           SZ9 = 4
Line:44          SZ16 = 4
Line:45          SZ17 = 5
Line:46         SZ127 = 7
Line:47        SZ1023 = 10
Line:48        SZ1024 = 10
Line:49        SZ2_16 = 17

我试着找到最接近2的次幂,然后写出这个函数。希望它能帮助你。只要用最近的小数乘以2,就能得到2的最近上次方

int nearest_upper_power(int number){
int temp=number;
while((number&(number-1))!=0){
temp<<=1;
number&=temp;
}
//Here number is closest lower power
number*=2;
return number;
}

C / c++中用于整数输入的高效微软(例如Visual Studio 2017)特定解决方案。在检查最有效的1位的位置之前,通过递减处理输入完全匹配2的幂值的情况。

inline unsigned int ExpandToPowerOf2(unsigned int Value)
{
unsigned long Index;
_BitScanReverse(&Index, Value - 1);
return (1U << (Index + 1));
}


// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -


#if defined(WIN64) // The _BitScanReverse64 intrinsic is only available for 64 bit builds because it depends on x64


inline unsigned long long ExpandToPowerOf2(unsigned long long Value)
{
unsigned long Index;
_BitScanReverse64(&Index, Value - 1);
return (1ULL << (Index + 1));
}


#endif

这将为英特尔处理器生成5个左右的内联指令,类似如下:

dec eax
bsr rcx, rax
inc ecx
mov eax, 1
shl rax, cl

显然Visual Studio c++编译器并没有针对编译时值进行优化,但这里并没有大量的指令。

编辑:

如果你想让输入值1产生1(2的0次方),对上面代码的一个小修改仍然会生成没有分支的直通指令。

inline unsigned int ExpandToPowerOf2(unsigned int Value)
{
unsigned long Index;
_BitScanReverse(&Index, --Value);
if (Value == 0)
Index = (unsigned long) -1;
return (1U << (Index + 1));
}

生成更多的指令。诀窍在于Index可以被一个测试后跟一个cmove指令所取代。

将保罗·迪克森的答案应用到Excel中,效果非常好。

 =POWER(2,CEILING.MATH(LOG(A1)/LOG(2)))

@YannDroneaud答案的变体适用于x==1,仅适用于x86平台、编译器、gcc或clang:

__attribute__ ((const))
static inline uint32_t p2(uint32_t x)
{
#if 0
assert(x > 0);
assert(x <= ((UINT32_MAX/2) + 1));
#endif
int clz;
uint32_t xm1 = x-1;
asm(
"lzcnt %1,%0"
:"=r" (clz)
:"rm" (xm1)
:"cc"
);
return 1 << (32 - clz);
}

这是我用c语言的解决方案,希望能有所帮助!

int next_power_of_two(int n) {
int i = 0;
for (--n; n > 0; n >>= 1) {
i++;
}
return 1 << i;
}

尽管这个问题被标记为c,在这里我的5美分。幸运的是,c++ 20将包括std::ceil2std::floor2(参见在这里)。它是consexpr模板函数,目前GCC实现使用位移位并适用于任何整型无符号类型。

这是我用来让它成为一个常数表达式的,如果输入是一个常数表达式的话。

#define uptopow2_0(v) ((v) - 1)
#define uptopow2_1(v) (uptopow2_0(v) | uptopow2_0(v) >> 1)
#define uptopow2_2(v) (uptopow2_1(v) | uptopow2_1(v) >> 2)
#define uptopow2_3(v) (uptopow2_2(v) | uptopow2_2(v) >> 4)
#define uptopow2_4(v) (uptopow2_3(v) | uptopow2_3(v) >> 8)
#define uptopow2_5(v) (uptopow2_4(v) | uptopow2_4(v) >> 16)


#define uptopow2(v) (uptopow2_5(v) + 1)  /* this is the one programmer uses */

例如,这样的表达式:

uptopow2(sizeof (struct foo))

会很好地化简为常数。

你可能会发现以下的澄清有助于达到你的目的:

 ></a></p></div>
                                                                            </div>
                                </div>
                            </div>
                        </div>
                                                <div class=

将其转换为浮点数,然后使用.hex()来显示标准化的IEEE表示。

< p > <代码>祝辞祝辞祝辞浮动(789).hex () “0 x1.8a80000000000p + 9” < /代码> < / p >

然后提取指数,再加1。

< p > <代码>祝辞祝辞祝辞Int (float(789).hex().split('p+')[1]) + 1 10 < /代码> < / p >

取2的这个次方。

< p > <代码>祝辞祝辞祝辞2 ** (int(float(789).hex().split('p+')[1]) + 1) 1024 < /代码> < / p >
import sys




def is_power2(x):
return x > 0 and ((x & (x - 1)) == 0)




def find_nearest_power2(x):
if x <= 0:
raise ValueError("invalid input")
if is_power2(x):
return x
else:
bits = get_bits(x)
upper = 1 << (bits)
lower = 1 << (bits - 1)
mid = (upper + lower) // 2
if (x - mid) > 0:
return upper
else:
return lower




def get_bits(x):
"""return number of bits in binary representation"""
if x < 0:
raise ValueError("invalid input: input should be positive integer")
count = 0
while (x != 0):
try:
x = x >> 1
except TypeError as error:
print(error, "input should be of type integer")
sys.exit(1)
count += 1
return count


如果您想要单行模板。在这里

int nxt_po2(int n) { return 1 + (n|=(n|=(n|=(n|=(n|=(n-=1)>>1)>>2)>>4)>>8)>>16); }

int nxt_po2(int n) { return 1 + (n|=(n|=(n|=(n|=(n|=(n-=1)>>(1<<0))>>(1<<1))>>(1<<2))>>(1<<3))>>(1<<4)); }

c#中的可移植解决方案:

int GetNextPowerOfTwo(int input) {
return 1 << (int)Math.Ceiling(Math.Log2(input));
}

Math.Ceiling(Math.Log2(value))计算下一个2的幂的指数,1 <<通过位移计算实值。

更快的解决方案,如果你有。net Core 3或更高版本:

uint GetNextPowerOfTwoFaster(uint input) {
return (uint)1 << (sizeof(uint) * 8 - System.Numerics.BitOperations.LeadingZeroCount(input - 1));
}

它使用System.Numerics.BitOperations.LeadingZeroCount(),如果可用的话,使用硬件指令:

https://github.com/dotnet/corert/blob/master/src/System.Private.CoreLib/shared/System/Numerics/BitOperations.cs

更新:

RoundUpToPowerOf2 ()在。net 6中!内部实现与上面的. net Core 3解决方案基本相同。

这里是社区更新

在标准c++20中,这包含在<bit>中。 答案就是

#include <bit>
unsigned long upper_power_of_two(unsigned long v)
{
return std::bit_ceil(v);
}

<强>注意: 我给出的解决方案是c++,而不是c,我会给出一个答案问题,但它被关闭为一个重复的这个!< / p >

g++编译器提供了一个内置函数__builtin_clz,用于计算前导零:

所以我们可以这样做:

int nextPowerOfTwo(unsigned int x) {
return 1 << sizeof(x)*8 - __builtin_clz(x);
}


int main () {
std::cout << nextPowerOfTwo(7)  << std::endl;
std::cout << nextPowerOfTwo(31) << std::endl;
std::cout << nextPowerOfTwo(33) << std::endl;
std::cout << nextPowerOfTwo(8)  << std::endl;
std::cout << nextPowerOfTwo(91) << std::endl;
  

return 0;
}

结果:

8
32
64
16
128

但请注意,对于x == 0__builtin_clz返回是未定义的。

试图做出“最终的”;解决方法。下面的代码

  • 是针对C语言(不是c++),

  • 使用编译器内置生成有效的代码(CLZ或BSR指令),如果编译器支持任何,

  • 是可移植的(标准C和没有程序集),内置的除外,和

  • 处理所有未定义的行为。

如果你用c++编写,你可以适当地调整代码。注意,c++ 20引入了std:: bit_ceil,它做了完全相同的事情,只是在某些条件下行为可能是未定义的。

#include <limits.h>


#ifdef _MSC_VER
# if _MSC_VER >= 1400
/* _BitScanReverse is introduced in Visual C++ 2005 and requires
<intrin.h> (also introduced in Visual C++ 2005). */
#include <intrin.h>
#pragma intrinsic(_BitScanReverse)
#pragma intrinsic(_BitScanReverse64)
#  define HAVE_BITSCANREVERSE 1
# endif
#endif


/* Macro indicating that the compiler supports __builtin_clz().
The name HAVE_BUILTIN_CLZ seems to be the most common, but in some
projects HAVE__BUILTIN_CLZ is used instead. */
#ifdef __has_builtin
# if __has_builtin(__builtin_clz)
#  define HAVE_BUILTIN_CLZ 1
# endif
#elif defined(__GNUC__)
# if (__GNUC__ > 3)
#  define HAVE_BUILTIN_CLZ 1
# elif defined(__GNUC_MINOR__)
#  if (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)
#   define HAVE_BUILTIN_CLZ 1
#  endif
# endif
#endif


/**
* Returns the smallest power of two that is not smaller than x.
*/
unsigned long int next_power_of_2_long(unsigned long int x)
{
if (x <= 1) {
return 1;
}
x--;


#ifdef HAVE_BITSCANREVERSE
if (x > (ULONG_MAX >> 1)) {
return 0;
} else {
unsigned long int index;
(void) _BitScanReverse(&index, x);
return (1UL << (index + 1));
}
#elif defined(HAVE_BUILTIN_CLZ)
if (x > (ULONG_MAX >> 1)) {
return 0;
}
return (1UL << (sizeof(x) * CHAR_BIT - __builtin_clzl(x)));
#else
/* Solution from "Bit Twiddling Hacks"
<http://www.graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2>
but converted to a loop for smaller code size.
("gcc -O3" will unroll this.) */
{
unsigned int shift;
for (shift = 1; shift < sizeof(x) * CHAR_BIT; shift <<= 1) {
x |= (x >> shift);
}
}
return (x + 1);
#endif
}


unsigned int next_power_of_2(unsigned int x)
{
if (x <= 1) {
return 1;
}
x--;


#ifdef HAVE_BITSCANREVERSE
if (x > (UINT_MAX >> 1)) {
return 0;
} else {
unsigned long int index;
(void) _BitScanReverse(&index, x);
return (1U << (index + 1));
}
#elif defined(HAVE_BUILTIN_CLZ)
if (x > (UINT_MAX >> 1)) {
return 0;
}
return (1U << (sizeof(x) * CHAR_BIT - __builtin_clz(x)));
#else
{
unsigned int shift;
for (shift = 1; shift < sizeof(x) * CHAR_BIT; shift <<= 1) {
x |= (x >> shift);
}
}
return (x + 1);
#endif
}


unsigned long long next_power_of_2_long_long(unsigned long long x)
{
if (x <= 1) {
return 1;
}
x--;


#if (defined(HAVE_BITSCANREVERSE) && \
ULLONG_MAX == 18446744073709551615ULL)
if (x > (ULLONG_MAX >> 1)) {
return 0;
} else {
/* assert(sizeof(__int64) == sizeof(long long)); */
unsigned long int index;
(void) _BitScanReverse64(&index, x);
return (1ULL << (index + 1));
}
#elif defined(HAVE_BUILTIN_CLZ)
if (x > (ULLONG_MAX >> 1)) {
return 0;
}
return (1ULL << (sizeof(x) * CHAR_BIT - __builtin_clzll(x)));
#else
{
unsigned int shift;
for (shift = 1; shift < sizeof(x) * CHAR_BIT; shift <<= 1) {
x |= (x >> shift);
}
}
return (x + 1);
#endif
}

c++ 14 clp2的constexpr版本

#include <iostream>
#include <type_traits>


// Closest least power of 2 minus 1. Returns 0 if n = 0.
template <typename UInt, std::enable_if_t<std::is_unsigned<UInt>::value,int> = 0>
constexpr UInt clp2m1(UInt n, unsigned i = 1) noexcept
{ return i < sizeof(UInt) * 8 ? clp2m1(UInt(n | (n >> i)),i << 1) : n; }


/// Closest least power of 2 minus 1. Returns 0 if n <= 0.
template <typename Int, std::enable_if_t<std::is_integral<Int>::value && std::is_signed<Int>::value,int> = 0>
constexpr auto clp2m1(Int n) noexcept
{ return clp2m1(std::make_unsigned_t<Int>(n <= 0 ? 0 : n)); }


/// Closest least power of 2. Returns 2^N: 2^(N-1) < n <= 2^N. Returns 0 if n <= 0.
template <typename Int, std::enable_if_t<std::is_integral<Int>::value,int> = 0>
constexpr auto clp2(Int n) noexcept
{ return clp2m1(std::make_unsigned_t<Int>(n-1)) + 1; }


/// Next power of 2. Returns 2^N: 2^(N-1) <= n < 2^N. Returns 1 if n = 0. Returns 0 if n < 0.
template <typename Int, std::enable_if_t<std::is_integral<Int>::value,int> = 0>
constexpr auto np2(Int n) noexcept
{ return clp2m1(std::make_unsigned_t<Int>(n)) + 1; }


template <typename T>
void test(T v) { std::cout << clp2(v) << std::endl; }


int main()
{
test(-5);                          // 0
test(0);                           // 0
test(8);                           // 8
test(31);                          // 32
test(33);                          // 64
test(789);                         // 1024
test(char(260));                   // 4
test(unsigned(-1) - 1);            // 0
test<long long>(unsigned(-1) - 1); // 4294967296


return 0;
}
from math import ceil, log2
pot_ceil = lambda N: 0x1 << ceil(log2(N))

测试:

for i in range(10):
print(i, pot_ceil(i))

输出:

1 1
2 2
3 4
4 4
5 8
6 8
7 8
8 8
9 16
10 16