int[] array = new int[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int n = 3;
var result =
array.Select((value, index) => new { Value = value, Index = index }).GroupBy(i => i.Index % n, i => i.Value);
// or
var result2 =
from i in array.Select((value, index) => new { Value = value, Index = index })
group i.Value by i.Index % n into g
select g;
然而,由于某些原因,它们不能被强制转换为 IEnumable < IEnumable < int > ..。
static class LinqExtensions
{
public static IEnumerable<IEnumerable<T>> Split<T>(this IEnumerable<T> list, int parts)
{
int i = 0;
var splits = from item in list
group item by i++ % parts into part
select part.AsEnumerable();
return splits;
}
}
int[] items = new int[] { 0,1,2,3,4,5,6,7,8,9, 10 };
int itemIndex = 0;
int groupSize = 2;
int nextGroup = groupSize;
var seqItems = from aItem in items
group aItem by
(itemIndex++ < nextGroup)
?
nextGroup / groupSize
:
(nextGroup += groupSize) / groupSize
into itemGroup
select itemGroup.AsEnumerable();
<Extension()> Public Function Chunk(Of T)(ByVal this As IList(Of T), ByVal size As Integer) As List(Of List(Of T))
Dim result As New List(Of List(Of T))
For i = 0 To CInt(Math.Ceiling(this.Count / size)) - 1
result.Add(New List(Of T)(this.GetRange(i * size, Math.Min(size, this.Count - (i * size)))))
Next
Return result
End Function
I have been using the Partition function I posted earlier quite often. The only bad thing about it was that is wasn't completely streaming. This is not a problem if you work with few elements in your sequence. I needed a new solution when i started working with 100.000+ elements in my sequence.
下面的解决方案要复杂得多(代码也更多!) ,但是它非常有效。
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Collections;
namespace LuvDaSun.Linq
{
public static class EnumerableExtensions
{
public static IEnumerable<IEnumerable<T>> Partition<T>(this IEnumerable<T> enumerable, int partitionSize)
{
/*
return enumerable
.Select((item, index) => new { Item = item, Index = index, })
.GroupBy(item => item.Index / partitionSize)
.Select(group => group.Select(item => item.Item) )
;
*/
return new PartitioningEnumerable<T>(enumerable, partitionSize);
}
}
class PartitioningEnumerable<T> : IEnumerable<IEnumerable<T>>
{
IEnumerable<T> _enumerable;
int _partitionSize;
public PartitioningEnumerable(IEnumerable<T> enumerable, int partitionSize)
{
_enumerable = enumerable;
_partitionSize = partitionSize;
}
public IEnumerator<IEnumerable<T>> GetEnumerator()
{
return new PartitioningEnumerator<T>(_enumerable.GetEnumerator(), _partitionSize);
}
IEnumerator IEnumerable.GetEnumerator()
{
return GetEnumerator();
}
}
class PartitioningEnumerator<T> : IEnumerator<IEnumerable<T>>
{
IEnumerator<T> _enumerator;
int _partitionSize;
public PartitioningEnumerator(IEnumerator<T> enumerator, int partitionSize)
{
_enumerator = enumerator;
_partitionSize = partitionSize;
}
public void Dispose()
{
_enumerator.Dispose();
}
IEnumerable<T> _current;
public IEnumerable<T> Current
{
get { return _current; }
}
object IEnumerator.Current
{
get { return _current; }
}
public void Reset()
{
_current = null;
_enumerator.Reset();
}
public bool MoveNext()
{
bool result;
if (_enumerator.MoveNext())
{
_current = new PartitionEnumerable<T>(_enumerator, _partitionSize);
result = true;
}
else
{
_current = null;
result = false;
}
return result;
}
}
class PartitionEnumerable<T> : IEnumerable<T>
{
IEnumerator<T> _enumerator;
int _partitionSize;
public PartitionEnumerable(IEnumerator<T> enumerator, int partitionSize)
{
_enumerator = enumerator;
_partitionSize = partitionSize;
}
public IEnumerator<T> GetEnumerator()
{
return new PartitionEnumerator<T>(_enumerator, _partitionSize);
}
IEnumerator IEnumerable.GetEnumerator()
{
return GetEnumerator();
}
}
class PartitionEnumerator<T> : IEnumerator<T>
{
IEnumerator<T> _enumerator;
int _partitionSize;
int _count;
public PartitionEnumerator(IEnumerator<T> enumerator, int partitionSize)
{
_enumerator = enumerator;
_partitionSize = partitionSize;
}
public void Dispose()
{
}
public T Current
{
get { return _enumerator.Current; }
}
object IEnumerator.Current
{
get { return _enumerator.Current; }
}
public void Reset()
{
if (_count > 0) throw new InvalidOperationException();
}
public bool MoveNext()
{
bool result;
if (_count < _partitionSize)
{
if (_count > 0)
{
result = _enumerator.MoveNext();
}
else
{
result = true;
}
_count++;
}
else
{
result = false;
}
return result;
}
}
}
public static IEnumerable<IEnumerable<T>>
Section<T>(this IEnumerable<T> source, int length)
{
if (length <= 0)
throw new ArgumentOutOfRangeException("length");
var section = new List<T>(length);
foreach (var item in source)
{
section.Add(item);
if (section.Count == length)
{
yield return section.AsReadOnly();
section = new List<T>(length);
}
}
if (section.Count > 0)
yield return section.AsReadOnly();
}
Interesting thread. To get a streaming version of Split/Partition, one can use enumerators and yield sequences from the enumerator using extension methods. Converting imperative code to functional code using yield is a very powerful technique indeed.
First an enumerator extension that turns a count of elements into a lazy sequence:
public static IEnumerable<T> TakeFromCurrent<T>(this IEnumerator<T> enumerator, int count)
{
while (count > 0)
{
yield return enumerator.Current;
if (--count > 0 && !enumerator.MoveNext()) yield break;
}
}
然后是一个可枚举扩展,它分割一个序列:
public static IEnumerable<IEnumerable<T>> Partition<T>(this IEnumerable<T> seq, int partitionSize)
{
var enumerator = seq.GetEnumerator();
while (enumerator.MoveNext())
{
yield return enumerator.TakeFromCurrent(partitionSize);
}
}
public static IEnumerable<IEnumerable<T>> Split<T>(this IEnumerable<T> items,
int numOfParts)
{
int i = 0;
return items.GroupBy(x => i++ % numOfParts);
}
上述方法将 IEnumerable<T>分成 N 个大小相同或接近相同的块。
public static IEnumerable<IEnumerable<T>> Partition<T>(this IEnumerable<T> items,
int partitionSize)
{
int i = 0;
return items.GroupBy(x => i++ / partitionSize).ToArray();
}
public static IEnumerable<IEnumerable<T>> Split<T>(this ICollection<T> items,
int numberOfChunks)
{
if (numberOfChunks <= 0 || numberOfChunks > items.Count)
throw new ArgumentOutOfRangeException("numberOfChunks");
int sizePerPacket = items.Count / numberOfChunks;
int extra = items.Count % numberOfChunks;
for (int i = 0; i < numberOfChunks - extra; i++)
yield return items.Skip(i * sizePerPacket).Take(sizePerPacket);
int alreadyReturnedCount = (numberOfChunks - extra) * sizePerPacket;
int toReturnCount = extra == 0 ? 0 : (items.Count - numberOfChunks) / extra + 1;
for (int i = 0; i < extra; i++)
yield return items.Skip(alreadyReturnedCount + i * toReturnCount).Take(toReturnCount);
}
using System.Collections.Generic;
public static class EnumerableExtensions
{
/// <summary>
/// Partitions an enumerable into individual pages of a specified size, still scanning the source enumerable just once
/// </summary>
/// <typeparam name="T">The element type</typeparam>
/// <param name="enumerable">The source enumerable</param>
/// <param name="pageSize">The number of elements to return in each page</param>
/// <returns></returns>
public static IEnumerable<IEnumerable<T>> Partition<T>(this IEnumerable<T> enumerable, int pageSize)
{
var enumerator = enumerable.GetEnumerator();
while (enumerator.MoveNext())
{
var indexWithinPage = new IntByRef { Value = 0 };
yield return SubPartition(enumerator, pageSize, indexWithinPage);
// Continue iterating through any remaining items in the page, to align with the start of the next page
for (; indexWithinPage.Value < pageSize; indexWithinPage.Value++)
{
if (!enumerator.MoveNext())
{
yield break;
}
}
}
}
private static IEnumerable<T> SubPartition<T>(IEnumerator<T> enumerator, int pageSize, IntByRef index)
{
for (; index.Value < pageSize; index.Value++)
{
yield return enumerator.Current;
if (!enumerator.MoveNext())
{
yield break;
}
}
}
private class IntByRef
{
public int Value { get; set; }
}
}
protected List<List<int>> MySplit(int MaxNumber, int Divider)
{
List<List<int>> lst = new List<List<int>>();
int ListCount = 0;
int d = MaxNumber / Divider;
lst.Add(new List<int>());
for (int i = 1; i <= MaxNumber; i++)
{
lst[ListCount].Add(i);
if (i != 0 && i % d == 0)
{
ListCount++;
d += MaxNumber / Divider;
lst.Add(new List<int>());
}
}
return lst;
}
Here is a little tweak for the number of items instead of the number of parts:
public static class MiscExctensions
{
public static IEnumerable<IEnumerable<T>> Split<T>(this IEnumerable<T> list, int nbItems)
{
return (
list
.Select((o, n) => new { o, n })
.GroupBy(g => (int)(g.n / nbItems))
.Select(g => g.Select(x => x.o))
);
}
}
static public IList<T[]> GetChunks<T>(this IEnumerable<T> source, int batchsize)
{
IList<T[]> result = null;
if (source != null && batchsize > 0)
{
var list = source as List<T> ?? source.ToList();
if (list.Count > 0)
{
result = new List<T[]>();
for (var index = 0; index < list.Count; index += batchsize)
{
var rangesize = Math.Min(batchsize, list.Count - index);
result.Add(list.GetRange(index, rangesize).ToArray());
}
}
}
return result ?? Enumerable.Empty<T[]>().ToList();
}
static public void TestGetChunks()
{
var ids = Enumerable.Range(1, 163).Select(i => i.ToString());
foreach (var chunk in ids.GetChunks(20))
{
Console.WriteLine("[{0}]", String.Join(",", chunk));
}
}
在这个使用 GetRange 和 Math 的问题系列中,我看到了一些答案。阿敏。但是我相信总的来说,这是一个在错误检查和效率方面更加完整的解决方案。
static class Program
{
static void Main(string[] args)
{
var input = new List<String>();
for (int k = 0; k < 18; ++k)
{
input.Add(k.ToString());
}
var result = splitListIntoSmallerLists(input, 15);
int i = 0;
foreach(var resul in result){
Console.WriteLine("------Segment:" + i.ToString() + "--------");
foreach(var res in resul){
Console.WriteLine(res);
}
i++;
}
Console.ReadLine();
}
private static List<List<T>> splitListIntoSmallerLists<T>(List<T> i_bigList,int i_numberOfSmallerLists)
{
if (i_numberOfSmallerLists <= 0)
throw new ArgumentOutOfRangeException("Illegal value of numberOfSmallLists");
int normalizedSpreadRemainderCounter = 0;
int normalizedSpreadNumber = 0;
//e.g 7 /5 > 0 ==> output size is 5 , 2 /5 < 0 ==> output is 2
int minimumNumberOfPartsInEachSmallerList = i_bigList.Count / i_numberOfSmallerLists;
int remainder = i_bigList.Count % i_numberOfSmallerLists;
int outputSize = minimumNumberOfPartsInEachSmallerList > 0 ? i_numberOfSmallerLists : remainder;
//In case remainder > 0 we want to spread the remainder equally between the others
if (remainder > 0)
{
if (minimumNumberOfPartsInEachSmallerList > 0)
{
normalizedSpreadNumber = (int)Math.Floor((double)i_numberOfSmallerLists / remainder);
}
else
{
normalizedSpreadNumber = 1;
}
}
List<List<T>> retVal = new List<List<T>>(outputSize);
int inputIndex = 0;
for (int i = 0; i < outputSize; ++i)
{
retVal.Add(new List<T>());
if (minimumNumberOfPartsInEachSmallerList > 0)
{
retVal[i].AddRange(i_bigList.GetRange(inputIndex, minimumNumberOfPartsInEachSmallerList));
inputIndex += minimumNumberOfPartsInEachSmallerList;
}
//If we have remainder take one from it, if our counter is equal to normalizedSpreadNumber.
if (remainder > 0)
{
if (normalizedSpreadRemainderCounter == normalizedSpreadNumber-1)
{
retVal[i].Add(i_bigList[inputIndex]);
remainder--;
inputIndex++;
normalizedSpreadRemainderCounter=0;
}
else
{
normalizedSpreadRemainderCounter++;
}
}
}
return retVal;
}
}
below code returns both given number of chunks also with sorted data
static IEnumerable<IEnumerable<T>> SplitSequentially<T>(int chunkParts, List<T> inputList)
{
List<int> Splits = split(inputList.Count, chunkParts);
var skipNumber = 0;
List<List<T>> list = new List<List<T>>();
foreach (var count in Splits)
{
var internalList = inputList.Skip(skipNumber).Take(count).ToList();
list.Add(internalList);
skipNumber += count;
}
return list;
}
static List<int> split(int x, int n)
{
List<int> list = new List<int>();
if (x % n == 0)
{
for (int i = 0; i < n; i++)
list.Add(x / n);
}
else
{
// upto n-(x % n) the values
// will be x / n
// after that the values
// will be x / n + 1
int zp = n - (x % n);
int pp = x / n;
for (int i = 0; i < n; i++)
{
if (i >= zp)
list.Add((pp + 1));
else
list.Add(pp);
}
}
return list;
}