我正在训练CNN按主题对文本进行分类。当我使用二进制交叉熵时,我得到~80%的准确率,使用分类交叉熵时,我得到~50%的准确率。
我不明白为什么会这样。这是一个多类问题,这是不是意味着我必须使用分类交叉熵而二元交叉熵的结果是没有意义的?
model.add(embedding_layer)
model.add(Dropout(0.25))
# convolution layers
model.add(Conv1D(nb_filter=32,
filter_length=4,
border_mode='valid',
activation='relu'))
model.add(MaxPooling1D(pool_length=2))
# dense layers
model.add(Flatten())
model.add(Dense(256))
model.add(Dropout(0.25))
model.add(Activation('relu'))
# output layer
model.add(Dense(len(class_id_index)))
model.add(Activation('softmax'))
然后我像这样编译它,使用categorical_crossentropy
作为损失函数:
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
或
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
直观地说,我为什么要使用分类交叉熵,我不明白为什么我用二进制得到好的结果,而用分类得到的结果很差。