熊猫 read_xml()方法测试策略

目前,熊猫 I/O 工具不维护 read_xml()方法和对应的 to_xml()。然而,read_json证明了树状结构可以用于数据帧导入,read_html可以用于标记格式。

如果大熊猫团队确实考虑在未来的大熊猫版本中使用这样的 read_xml方法,他们会采用什么实现方法: 使用内置的 xml.etree.ElementTree及其 iterfind()iterparse()功能进行解析,还是使用第三方模块 lxml及其 XPath 1.0和 XSLT 1.0方法进行解析?

下面是我对一个简单的、平面的、以元素为中心的 XML 输入的四种方法类型的测试运行。所有这些方法都是为了对任何二级子根进行广义解析而建立的,每种方法都应该产生完全相同的熊猫数据框架。除了字典列表中的最后一个字母 pd.Dataframe()外,其余都是 pd.Dataframe()。XSLT 方法将 XML 转换为 CSV,以便在 pd.read_csv()中转换 StringIO()

问题 < em > (多部分)

  • 性能: 如何解释在迭代解析文件时,对于较大的文件通常推荐使用较慢的 iterparse?部分原因是由于 if逻辑检查吗?

  • 内存: CPU 内存是否与 I/O 调用中的计时相关?XSLT 和 XPath 1.0在处理较大的 XML 文档时往往不能很好地伸缩,因为整个文件必须在内存中读取才能进行解析。

  • 策略: 字典列表是 Dataframe()调用的最佳策略吗?看看这些有趣的答案: 发电机版本和 用户定义的 iterwalk版本。两个向上传输列表到 dataframe。

输入 Data < em > (Stack Overflow 的当前 年度最高用户,其中包括我们的熊猫朋友)

<?xml version="1.0" encoding="utf-8"?>
<stackoverflow>
<topusers>
<user>Gordon Linoff</user>
<link>http://www.stackoverflow.com//users/1144035/gordon-linoff</link>
<location>New York, United States</location>
<year_rep>5,985</year_rep>
<total_rep>499,408</total_rep>
<tag1>sql</tag1>
<tag2>sql-server</tag2>
<tag3>mysql</tag3>
</topusers>
<topusers>
<user>Günter Zöchbauer</user>
<link>http://www.stackoverflow.com//users/217408/g%c3%bcnter-z%c3%b6chbauer</link>
<location>Linz, Austria</location>
<year_rep>5,835</year_rep>
<total_rep>154,439</total_rep>
<tag1>angular2</tag1>
<tag2>typescript</tag2>
<tag3>javascript</tag3>
</topusers>
<topusers>
<user>jezrael</user>
<link>http://www.stackoverflow.com//users/2901002/jezrael</link>
<location>Bratislava, Slovakia</location>
<year_rep>5,740</year_rep>
<total_rep>83,237</total_rep>
<tag1>pandas</tag1>
<tag2>python</tag2>
<tag3>dataframe</tag3>
</topusers>
<topusers>
<user>VonC</user>
<link>http://www.stackoverflow.com//users/6309/vonc</link>
<location>France</location>
<year_rep>5,577</year_rep>
<total_rep>651,397</total_rep>
<tag1>git</tag1>
<tag2>github</tag2>
<tag3>docker</tag3>
</topusers>
<topusers>
<user>Martijn Pieters</user>
<link>http://www.stackoverflow.com//users/100297/martijn-pieters</link>
<location>Cambridge, United Kingdom</location>
<year_rep>5,337</year_rep>
<total_rep>525,176</total_rep>
<tag1>python</tag1>
<tag2>python-3.x</tag2>
<tag3>python-2.7</tag3>
</topusers>
<topusers>
<user>T.J. Crowder</user>
<link>http://www.stackoverflow.com//users/157247/t-j-crowder</link>
<location>United Kingdom</location>
<year_rep>5,258</year_rep>
<total_rep>508,310</total_rep>
<tag1>javascript</tag1>
<tag2>jquery</tag2>
<tag3>java</tag3>
</topusers>
<topusers>
<user>akrun</user>
<link>http://www.stackoverflow.com//users/3732271/akrun</link>
<location></location>
<year_rep>5,188</year_rep>
<total_rep>229,553</total_rep>
<tag1>r</tag1>
<tag2>dplyr</tag2>
<tag3>dataframe</tag3>
</topusers>
<topusers>
<user>Wiktor Stribi?ew</user>
<link>http://www.stackoverflow.com//users/3832970/wiktor-stribi%c5%bcew</link>
<location>Warsaw, Poland</location>
<year_rep>4,948</year_rep>
<total_rep>158,134</total_rep>
<tag1>regex</tag1>
<tag2>javascript</tag2>
<tag3>c#</tag3>
</topusers>
<topusers>
<user>Darin Dimitrov</user>
<link>http://www.stackoverflow.com//users/29407/darin-dimitrov</link>
<location>Sofia, Bulgaria</location>
<year_rep>4,936</year_rep>
<total_rep>709,683</total_rep>
<tag1>c#</tag1>
<tag2>asp.net-mvc</tag2>
<tag3>asp.net-mvc-3</tag3>
</topusers>
<topusers>
<user>Eric Duminil</user>
<link>http://www.stackoverflow.com//users/6419007/eric-duminil</link>
<location></location>
<year_rep>4,854</year_rep>
<total_rep>12,557</total_rep>
<tag1>ruby</tag1>
<tag2>ruby-on-rails</tag2>
<tag3>arrays</tag3>
</topusers>
<topusers>
<user>alecxe</user>
<link>http://www.stackoverflow.com//users/771848/alecxe</link>
<location>New York, United States</location>
<year_rep>4,723</year_rep>
<total_rep>233,368</total_rep>
<tag1>python</tag1>
<tag2>selenium</tag2>
<tag3>protractor</tag3>
</topusers>
<topusers>
<user>Jean-François Fabre</user>
<link>http://www.stackoverflow.com//users/6451573/jean-fran%c3%a7ois-fabre</link>
<location>Toulouse, France</location>
<year_rep>4,526</year_rep>
<total_rep>30,027</total_rep>
<tag1>python</tag1>
<tag2>python-3.x</tag2>
<tag3>python-2.7</tag3>
</topusers>
<topusers>
<user>piRSquared</user>
<link>http://www.stackoverflow.com//users/2336654/pirsquared</link>
<location>Bellevue, WA, United States</location>
<year_rep>4,482</year_rep>
<total_rep>41,183</total_rep>
<tag1>pandas</tag1>
<tag2>python</tag2>
<tag3>dataframe</tag3>
</topusers>
<topusers>
<user>CommonsWare</user>
<link>http://www.stackoverflow.com//users/115145/commonsware</link>
<location>Who Wants to Know?</location>
<year_rep>4,475</year_rep>
<total_rep>616,135</total_rep>
<tag1>android</tag1>
<tag2>java</tag2>
<tag3>android-intent</tag3>
</topusers>
<topusers>
<user>Quentin</user>
<link>http://www.stackoverflow.com//users/19068/quentin</link>
<location>United Kingdom</location>
<year_rep>4,464</year_rep>
<total_rep>509,365</total_rep>
<tag1>javascript</tag1>
<tag2>html</tag2>
<tag3>css</tag3>
</topusers>
<topusers>
<user>Jon Skeet</user>
<link>http://www.stackoverflow.com//users/22656/jon-skeet</link>
<location>Reading, United Kingdom</location>
<year_rep>4,348</year_rep>
<total_rep>921,690</total_rep>
<tag1>c#</tag1>
<tag2>java</tag2>
<tag3>.net</tag3>
</topusers>
<topusers>
<user>Felix Kling</user>
<link>http://www.stackoverflow.com//users/218196/felix-kling</link>
<location>Sunnyvale, CA</location>
<year_rep>4,324</year_rep>
<total_rep>411,535</total_rep>
<tag1>javascript</tag1>
<tag2>jquery</tag2>
<tag3>asynchronous</tag3>
</topusers>
<topusers>
<user>matt</user>
<link>http://www.stackoverflow.com//users/341994/matt</link>
<location></location>
<year_rep>4,313</year_rep>
<total_rep>220,515</total_rep>
<tag1>swift</tag1>
<tag2>ios</tag2>
<tag3>xcode</tag3>
</topusers>
<topusers>
<user>Psidom</user>
<link>http://www.stackoverflow.com//users/4983450/psidom</link>
<location>Atlanta, GA, United States</location>
<year_rep>4,236</year_rep>
<total_rep>36,950</total_rep>
<tag1>python</tag1>
<tag2>pandas</tag2>
<tag3>r</tag3>
</topusers>
<topusers>
<user>Martin R</user>
<link>http://www.stackoverflow.com//users/1187415/martin-r</link>
<location>Germany</location>
<year_rep>4,195</year_rep>
<total_rep>269,380</total_rep>
<tag1>swift</tag1>
<tag2>ios</tag2>
<tag3>swift3</tag3>
</topusers>
<topusers>
<user>Barmar</user>
<link>http://www.stackoverflow.com//users/1491895/barmar</link>
<location>Arlington, MA</location>
<year_rep>4,179</year_rep>
<total_rep>289,989</total_rep>
<tag1>javascript</tag1>
<tag2>php</tag2>
<tag3>jquery</tag3>
</topusers>
<topusers>
<user>Alexey Mezenin</user>
<link>http://www.stackoverflow.com//users/1227923/alexey-mezenin</link>
<location>??????</location>
<year_rep>4,142</year_rep>
<total_rep>31,602</total_rep>
<tag1>laravel</tag1>
<tag2>php</tag2>
<tag3>laravel-5.3</tag3>
</topusers>
<topusers>
<user>BalusC</user>
<link>http://www.stackoverflow.com//users/157882/balusc</link>
<location>Amsterdam, Netherlands</location>
<year_rep>4,046</year_rep>
<total_rep>703,046</total_rep>
<tag1>java</tag1>
<tag2>jsf</tag2>
<tag3>servlets</tag3>
</topusers>
<topusers>
<user>GurV</user>
<link>http://www.stackoverflow.com//users/6348498/gurv</link>
<location></location>
<year_rep>4,016</year_rep>
<total_rep>7,932</total_rep>
<tag1>sql</tag1>
<tag2>mysql</tag2>
<tag3>sql-server</tag3>
</topusers>
<topusers>
<user>Nina Scholz</user>
<link>http://www.stackoverflow.com//users/1447675/nina-scholz</link>
<location>Berlin, Deutschland</location>
<year_rep>3,950</year_rep>
<total_rep>61,135</total_rep>
<tag1>javascript</tag1>
<tag2>arrays</tag2>
<tag3>object</tag3>
</topusers>
<topusers>
<user>JB Nizet</user>
<link>http://www.stackoverflow.com//users/571407/jb-nizet</link>
<location>Saint-Etienne, France</location>
<year_rep>3,923</year_rep>
<total_rep>418,780</total_rep>
<tag1>java</tag1>
<tag2>hibernate</tag2>
<tag3>java-8</tag3>
</topusers>
<topusers>
<user>Frank van Puffelen</user>
<link>http://www.stackoverflow.com//users/209103/frank-van-puffelen</link>
<location>San Francisco, CA</location>
<year_rep>3,920</year_rep>
<total_rep>86,520</total_rep>
<tag1>firebase</tag1>
<tag2>firebase-database</tag2>
<tag3>android</tag3>
</topusers>
<topusers>
<user>dasblinkenlight</user>
<link>http://www.stackoverflow.com//users/335858/dasblinkenlight</link>
<location>United States</location>
<year_rep>3,886</year_rep>
<total_rep>475,813</total_rep>
<tag1>c#</tag1>
<tag2>java</tag2>
<tag3>c++</tag3>
</topusers>
<topusers>
<user>Tim Biegeleisen</user>
<link>http://www.stackoverflow.com//users/1863229/tim-biegeleisen</link>
<location>Singapore</location>
<year_rep>3,814</year_rep>
<total_rep>77,211</total_rep>
<tag1>sql</tag1>
<tag2>mysql</tag2>
<tag3>java</tag3>
</topusers>
<topusers>
<user>Greg Hewgill</user>
<link>http://www.stackoverflow.com//users/893/greg-hewgill</link>
<location>Christchurch, New Zealand</location>
<year_rep>3,796</year_rep>
<total_rep>529,137</total_rep>
<tag1>git</tag1>
<tag2>python</tag2>
<tag3>git-pull</tag3>
</topusers>
<topusers>
<user>unutbu</user>
<link>http://www.stackoverflow.com//users/190597/unutbu</link>
<location></location>
<year_rep>3,735</year_rep>
<total_rep>401,595</total_rep>
<tag1>python</tag1>
<tag2>pandas</tag2>
<tag3>numpy</tag3>
</topusers>
<topusers>
<user>Hans Passant</user>
<link>http://www.stackoverflow.com//users/17034/hans-passant</link>
<location>Madison, WI</location>
<year_rep>3,688</year_rep>
<total_rep>672,118</total_rep>
<tag1>c#</tag1>
<tag2>.net</tag2>
<tag3>winforms</tag3>
</topusers>
<topusers>
<user>Jonathan Leffler</user>
<link>http://www.stackoverflow.com//users/15168/jonathan-leffler</link>
<location>California, USA</location>
<year_rep>3,649</year_rep>
<total_rep>455,157</total_rep>
<tag1>c</tag1>
<tag2>bash</tag2>
<tag3>unix</tag3>
</topusers>
<topusers>
<user>paxdiablo</user>
<link>http://www.stackoverflow.com//users/14860/paxdiablo</link>
<location></location>
<year_rep>3,636</year_rep>
<total_rep>507,043</total_rep>
<tag1>c</tag1>
<tag2>c++</tag2>
<tag3>bash</tag3>
</topusers>
<topusers>
<user>Pranav C Balan</user>
<link>http://www.stackoverflow.com//users/3037257/pranav-c-balan</link>
<location>Ramanthali, Kannur, Kerala, India</location>
<year_rep>3,604</year_rep>
<total_rep>64,476</total_rep>
<tag1>javascript</tag1>
<tag2>jquery</tag2>
<tag3>html</tag3>
</topusers>
<topusers>
<user>Suragch</user>
<link>http://www.stackoverflow.com//users/3681880/suragch</link>
<location>Hohhot, China</location>
<year_rep>3,580</year_rep>
<total_rep>71,032</total_rep>
<tag1>swift</tag1>
<tag2>ios</tag2>
<tag3>android</tag3>
</topusers>
</stackoverflow>

Python 方法

import xml.etree.ElementTree as et
import pandas as pd
from io import StringIO
from lxml import etree as lxet


def read_xml_iterfind():
tree = et.parse('Input.xml')


data = []
inner = {}
for el in tree.iterfind('./*'):
for i in el.iterfind('*'):
inner[i.tag] = i.text
data.append(inner)
inner = {}


df = pd.DataFrame(data)


def read_xml_iterparse():
data = []
inner = {}
i = 1
for (ev, el) in et.iterparse(path):
if i <= 2:
first_tag = el.tag


if el.tag == first_tag and len(inner) != 0:
data.append(inner)
inner = {}


if el.text is not None and len(el.text.strip()) > 0:
inner[el.tag] = el.text
i += 1


df = pd.DataFrame(data)


def read_xml_lxml_xpath():
tree = lxet.parse('Input.xml')


data = []
inner = {}
for el in tree.xpath('/*/*'):
for i in el:
inner[i.tag] = i.text
data.append(inner)
inner = {}


df = pd.DataFrame(data)


def read_xml_lxml_xsl():
xml = lxet.parse('Input.xml')


xslstr = '''
<xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output version="1.0" encoding="UTF-8" indent="yes"  method="text"/>
<xsl:strip-space elements="*"/>


<!-- HEADERS -->
<xsl:template match = "/*">
<xsl:for-each select="*[1]/*">
<xsl:value-of select="local-name()" />
<xsl:choose>
<xsl:when test="position() != last()">
<xsl:text>,</xsl:text>
</xsl:when>
<xsl:otherwise>
<xsl:text>&#xa;</xsl:text>
</xsl:otherwise>
</xsl:choose>
</xsl:for-each>
<xsl:apply-templates/>
</xsl:template>


<!-- DATA ROWS (COMMA-SEPARATED) -->
<xsl:template match="/*/*" priority="2">
<xsl:for-each select="*">
<xsl:if test="position() = 1">
<xsl:text>&quot;</xsl:text>
</xsl:if>
<xsl:value-of select="." />
<xsl:choose>
<xsl:when test="position() != last()">
<xsl:text>&quot;,&quot;</xsl:text>
</xsl:when>
<xsl:otherwise>
<xsl:text>&quot;&#xa;</xsl:text>
</xsl:otherwise>
</xsl:choose>
</xsl:for-each>
</xsl:template>


</xsl:transform>
'''
xsl = lxet.fromstring(xslstr)


transform = lxet.XSLT(xsl)
newdom = transform(xml)


df = pd.read_csv(StringIO(str(newdom)))

Timings < em > (使用当前的 XML 和带有25倍子级的 XML (即900个 StackOverflow 用户记录)

# SHORTER FILE
python -mtimeit -s'import readxml_test_runs as test' 'test.read_xml_iterfind()'
100 loops, best of 3: 3.87 msec per loop


python -mtimeit -s'import readxml_test_runs as test' 'test.read_xml_iterparse()'
100 loops, best of 3: 5.5 msec per loop


python -mtimeit -s'import readxml_test_runs as test' 'test.read_xml_lxml_xpath()'
100 loops, best of 3: 3.86 msec per loop


python -mtimeit -s'import readxml_test_runs as test' 'test.read_xml_lxml_xsl()'
100 loops, best of 3: 5.68 msec per loop


# LARGER FILE
python -mtimeit -n'100' -s'import readxml_test_runs as test' 'test.read_xml_iterfind()'
100 loops, best of 3: 36 msec per loop


python -mtimeit -n'100' -s'import readxml_test_runs as test' 'test.read_xml_iterparse()'
100 loops, best of 3: 78.9 msec per loop


python -mtimeit -n'100' -s'import readxml_test_runs as test' 'test.read_xml_lxml_xpath()'
100 loops, best of 3: 32.7 msec per loop


python -mtimeit -n'100' -s'import readxml_test_runs as test' 'test.read_xml_lxml_xsl()'
100 loops, best of 3: 51.4 msec per loop
10854 次浏览

PERFORMANCE: How do you explain the slower iterparse often recommended for larger files as file is iteratively parsed? Is it partly due to the if logic checks?

I would assume that more python code would make it slower, as the python code is evaluated every time. Have you tried a JIT compiler like pypy?

If I remove i and use first_tag only, it seems to be quite a bit faster, so yes it is partly due to the if logic checks:

def read_xml_iterparse2(path):
data = []
inner = {}
first_tag = None
for (ev, el) in et.iterparse(path):
if not first_tag:
first_tag = el.tag


if el.tag == first_tag and len(inner) != 0:
data.append(inner)
inner = {}


if el.text is not None and len(el.text.strip()) > 0:
inner[el.tag] = el.text


df = pd.DataFrame(data)


%timeit read_xml_iterparse(path)
# 10 loops, best of 5: 33 ms per loop
%timeit read_xml_iterparse2(path)
# 10 loops, best of 5: 23 ms per loop

I wasn't sure I understood the purpose of the last if check, but I'm also not sure why you would want to lose whitespace-only elements. Removing the last if consistently shaves off a little bit of time:

def read_xml_iterparse3(path):
data = []
inner = {}
first_tag = None
for (ev, el) in et.iterparse(path):
if not first_tag:
first_tag = el.tag


if el.tag == first_tag and len(inner) != 0:
data.append(inner)
inner = {}


inner[el.tag] = el.text


df = pd.DataFrame(data)


%timeit read_xml_iterparse(path)
# 10 loops, best of 5: 34.4 ms per loop
%timeit read_xml_iterparse2(path)
# 10 loops, best of 5: 24.5 ms per loop
%timeit read_xml_iterparse3(path)
# 10 loops, best of 5: 20.9 ms per loop

Now, with or without those performance improvements, your iterparse version seems to produce an extra-large dataframe. Here seems to be a working, fast version:

def read_xml_iterparse5(path):
data = []
inner = {}
for (ev, el) in et.iterparse(path):
# /ending parents trigger a new row, and in our case .text is \n followed by spaces.  it would be more reliable to pass 'topusers' to our read_xml_iterparse5 as the .tag to check
if el.text and el.text[0] == '\n':
# ignore /stackoverflow
if inner:
data.append(inner)
inner = {}
else:
inner[el.tag] = el.text


return pd.DataFrame(data)


print(read_xml_iterfind(path).shape)
# (900, 8)
print(read_xml_iterparse(path).shape)
# (7050, 8)
print(read_xml_lxml_xpath(path).shape)
# (900, 8)
print(read_xml_lxml_xsl(path).shape)
# (900, 8)
print(read_xml_iterparse5(path).shape)
# (900, 8)
%timeit read_xml_iterparse5(path)
# 10 loops, best of 5: 20.6 ms per loop

MEMORY: Do CPU memory correlate with timings in I/O calls? XSLT and XPath 1.0 tend not to scale well with larger XML documents as entire file must be read in memory to be parsed.

I'm not totally sure what you mean by "I/O calls" but if your document is small enough to fit in cache, then everything will be much faster as it won't evict many other items from the cache.

STRATEGY: Is list of dictionaries an optimal strategy for Dataframe() call? See these interesting answers: generator version and a iterwalk user-defined version. Both upcast lists to dataframe.

The lists use less memory, so depending on how many columns you have, it could make a noticeable difference. Of course, this then requires your XML tags to be in a consistent order, which they do appear to be. The DataFrame() call would also need to do less work, as it doesn't have to lookup keys in the dict on every row, to figure out what column if for what value.