group by pandas dataframe and select latest in each group

如何分组大熊猫的价值数据框架和选择最新(按日期)从每组?

例如,给定一个按日期排序的数据框架:

    id     product   date
0   220    6647     2014-09-01
1   220    6647     2014-09-03
2   220    6647     2014-10-16
3   826    3380     2014-11-11
4   826    3380     2014-12-09
5   826    3380     2015-05-19
6   901    4555     2014-09-01
7   901    4555     2014-10-05
8   901    4555     2014-11-01

按身份或产品分组,并选择最早的提供:

    id     product   date
2   220    6647     2014-10-16
5   826    3380     2015-05-19
8   901    4555     2014-11-01
87887 次浏览

groupby中使用 idxmax,将 dfloc切片

df.loc[df.groupby('id').date.idxmax()]


id  product       date
2  220     6647 2014-10-16
5  826     3380 2015-05-19
8  901     4555 2014-11-01

您还可以使用 tail和 groupby 来获取组的最后 n 个值:

df.sort_values('date').groupby('id').tail(1)


id  product date
2   220 6647    2014-10-16
8   901 4555    2014-11-01
5   826 3380    2015-05-19

使用 .tail()作为聚合方法并保持分组完整:

df.sort_values('date').groupby('id').apply(lambda x: x.tail(1))


id  product date
id
220 2   220 6647    2014-10-16
826 5   826 3380    2015-05-19
901 8   901 4555    2014-11-01

我有一个类似的问题,最终使用 drop_duplicates而不是 groupby

It seems to run significatively faster on large datasets when compared with other methods suggested above.

df.sort_values(by="date").drop_duplicates(subset=["id"], keep="last")


id  product        date
2  220     6647  2014-10-16
8  901     4555  2014-11-01
5  826     3380  2015-05-19

Given a dataframe sorted by date, you can obtain what you ask for in a number of ways:

像这样:

df.groupby(['id','product']).last()

像这样:

df.groupby(['id','product']).nth(-1)

或者像这样:

df.groupby(['id','product']).max()

如果不希望 idproduct显示为索引,请使用 groupby(['id', 'product'], as_index=False)。 可供选择的用途:

df.groupby(['id','product']).tail(1)
#import datetime library
from datetime import datetime as dt


#transform the date column to ordinal, or create a temp column converting to ordinal.
df['date'] = df.date.apply(lambda date: date.toordinal())


#apply aggregation function depending your desire. Earliest or Latest date.
latest_date = df.groupby('id').agg(latest=('date', max))
earliest_date = df.groupby('id').agg(earliest=('date', min))


#convert it from ordinal back to date.
df['date'] = df.date.apply(lambda date: dt.fromordinal(date))




#This operation may take seconds on millions of records.