numpy数组和矩阵之间有什么区别?我应该用哪一个?

它们各自的优点和缺点是什么?

据我所知,如果需要的话,任何一种都可以作为另一种的替代品,所以我是应该同时使用两种呢,还是应该坚持使用其中一种呢?

程序的风格会影响我的选择吗?我正在使用numpy做一些机器学习,所以确实有很多矩阵,但也有很多向量(数组)。

189878 次浏览
Numpy 矩阵是严格的二维,而Numpy 数组 (ndarrays)是 n维。矩阵对象是ndarray的子类,所以它们继承了所有 ndarray的属性和方法 numpy矩阵的主要优点是提供了一种方便的表示法 对于矩阵乘法:如果a和b是矩阵,那么a*b是它们的矩阵 产品。< / p >
import numpy as np


a = np.mat('4 3; 2 1')
b = np.mat('1 2; 3 4')
print(a)
# [[4 3]
#  [2 1]]
print(b)
# [[1 2]
#  [3 4]]
print(a*b)
# [[13 20]
#  [ 5  8]]

另一方面,从Python 3.5开始,NumPy支持使用@操作符进行中子星矩阵乘法,因此你可以在Python >= 3.5中使用ndarray实现同样方便的矩阵乘法。

import numpy as np


a = np.array([[4, 3], [2, 1]])
b = np.array([[1, 2], [3, 4]])
print(a@b)
# [[13 20]
#  [ 5  8]]
矩阵对象和ndarray都有.T来返回转置,但是矩阵 对象也有.H表示共轭转置,.I表示逆

相反,numpy数组始终遵守操作规则 按元素应用(除了新的@操作符)。因此,如果ab是numpy数组,则a*b就是数组 由元素相乘组成:

c = np.array([[4, 3], [2, 1]])
d = np.array([[1, 2], [3, 4]])
print(c*d)
# [[4 6]
#  [6 4]]

要获得矩阵乘法的结果,可以使用np.dot(或Python >= 3.5中的@,如上所示):

print(np.dot(c,d))
# [[13 20]
#  [ 5  8]]

**操作符的行为也不同:

print(a**2)
# [[22 15]
#  [10  7]]
print(c**2)
# [[16  9]
#  [ 4  1]]
由于a是一个矩阵,a**2返回矩阵积a*a。 由于c是一个ndarray, c**2返回一个包含每个组件平方的ndarray element-wise . < / p > 矩阵对象和ndarray之间还有其他技术上的区别 (与np.ravel,项目选择和序列行为有关) numpy数组的主要优点是它们比 二维矩阵> < /强。当你想要一个三维数组时会发生什么?然后 你必须使用ndarray,而不是矩阵对象。因此,学习使用矩阵 对象是更多的工作——你必须学习矩阵对象操作,还有 ndarray操作。< / p > 写一个混合矩阵和数组的程序会让你的生活变得困难 因为你必须跟踪你的变量是什么类型的对象,以免

相比之下,如果你只坚持使用ndarray,那么你可以做任何事情 矩阵对象可以做的,而且更多,除了略有不同 功能/符号。< /强> < / p >

如果你愿意放弃NumPy矩阵产品的视觉吸引力 (在Python >= 3.5中使用ndarray几乎可以同样优雅地实现),那么我认为NumPy数组绝对是可行的方法 < p > p。当然,你真的不必以牺牲另一个为代价来选择一个, 因为np.asmatrixnp.asarray允许你将其中一个转换为另一个 只要数组是二维的)。


NumPy arrays和NumPy matrixes 在这里之间的区别概要。

只是在unutbu的列表中添加一个案例。

对我来说,numpy ndarray与numpy矩阵或像matlab这样的矩阵语言相比,最大的实际区别之一是在约简操作中不保留维数。矩阵总是二维的,而数组的均值,例如,有一个维度少。

例如降低矩阵或数组的行:

与矩阵

>>> m = np.mat([[1,2],[2,3]])
>>> m
matrix([[1, 2],
[2, 3]])
>>> mm = m.mean(1)
>>> mm
matrix([[ 1.5],
[ 2.5]])
>>> mm.shape
(2, 1)
>>> m - mm
matrix([[-0.5,  0.5],
[-0.5,  0.5]])

与数组

>>> a = np.array([[1,2],[2,3]])
>>> a
array([[1, 2],
[2, 3]])
>>> am = a.mean(1)
>>> am.shape
(2,)
>>> am
array([ 1.5,  2.5])
>>> a - am #wrong
array([[-0.5, -0.5],
[ 0.5,  0.5]])
>>> a - am[:, np.newaxis]  #right
array([[-0.5,  0.5],
[-0.5,  0.5]])
我还认为混合数组和矩阵会带来很多“快乐”的调试时间。 然而,scipy。稀疏矩阵总是矩阵的运算符,比如乘法

正如其他人所提到的,也许matrix的主要优点是它为矩阵乘法提供了一个方便的符号。

然而,在Python 3.5中,终于有了一个用于矩阵乘法的专用中缀运算符: @

在最近的NumPy版本中,它可以与ndarrays一起使用:

A = numpy.ones((1, 3))
B = numpy.ones((3, 3))
A @ B

所以现在,当你有疑问的时候,你应该坚持ndarray

根据官方文件,不再建议使用矩阵类,因为它将在未来被删除。

https://numpy.org/doc/stable/reference/generated/numpy.matrix.html

正如其他答案已经声明的那样,您可以使用NumPy数组实现所有操作。

使用矩阵的一个优点是通过文本而不是嵌套的方括号更容易实例化。

你可以用矩阵来做

np.matrix("1, 1+1j, 0; 0, 1j, 0; 0, 0, 1")

并直接获得所需的输出:

matrix([[1.+0.j, 1.+1.j, 0.+0.j],
[0.+0.j, 0.+1.j, 0.+0.j],
[0.+0.j, 0.+0.j, 1.+0.j]])

如果你使用数组,这是行不通的:

np.array("1, 1+1j, 0; 0, 1j, 0; 0, 0, 1")

输出:

array('1, 1+1j, 0; 0, 1j, 0; 0, 0, 1', dtype='<U29')

Numpy数组的矩阵运算:

我想继续更新这个答案 如果一些用户有兴趣查找关于矩阵和numpy的信息,关于numpy数组的矩阵操作

作为公认的答案,numpy-ref.pdf说:

类numpy。矩阵将在未来被删除。

所以现在需要做矩阵代数运算

a = np.array([[1,3],[-2,4]])
b = np.array([[3,-2],[5,6]])

矩阵乘法(中缀矩阵乘法)

a@b
array([[18, 16],
[14, 28]])

置:

ab = a@b
ab.T
array([[18, 14],
[16, 28]])


  

矩阵的逆:

np.linalg.inv(ab)
array([[ 0.1       , -0.05714286],
[-0.05      ,  0.06428571]])


ab_i=np.linalg.inv(ab)
ab@ab_i  # proof of inverse
array([[1., 0.],
[0., 1.]]) # identity matrix

矩阵的行列式。

np.linalg.det(ab)
279.9999999999999

求解线性方程组:

1.   x + y = 3,
x + 2y = -8
b = np.array([3,-8])
a = np.array([[1,1], [1,2]])
x = np.linalg.solve(a,b)
x
array([ 14., -11.])
# Solution x=14, y=-11

特征值和特征向量:

a = np.array([[10,-18], [6,-11]])
np.linalg.eig(a)
(array([ 1., -2.]), array([[0.89442719, 0.83205029],
[0.4472136 , 0.5547002 ]])