最佳答案
作为一个简单的例子,考虑下面定义的 numpy 数组 arr
:
import numpy as np
arr = np.array([[5, np.nan, np.nan, 7, 2],
[3, np.nan, 1, 8, np.nan],
[4, 9, 6, np.nan, np.nan]])
其中 arr
在控制台输出中如下所示:
array([[ 5., nan, nan, 7., 2.],
[ 3., nan, 1., 8., nan],
[ 4., 9., 6., nan, nan]])
现在,我想按行“正向填充”数组 arr
中的 nan
值。我的意思是用左边最接近的有效值替换每个 nan
值。预期的结果是这样的:
array([[ 5., 5., 5., 7., 2.],
[ 3., 3., 1., 8., 8.],
[ 4., 9., 6., 6., 6.]])
我试过使用 for-loop:
for row_idx in range(arr.shape[0]):
for col_idx in range(arr.shape[1]):
if np.isnan(arr[row_idx][col_idx]):
arr[row_idx][col_idx] = arr[row_idx][col_idx - 1]
我还尝试使用熊猫数据框架作为中间步骤(因为熊猫数据框架有一个非常简洁的内置方法来进行前向填充) :
import pandas as pd
df = pd.DataFrame(arr)
df.fillna(method='ffill', axis=1, inplace=True)
arr = df.as_matrix()
上述两种策略都能产生预期的结果,但我一直想知道: 只使用数字向量运算的策略是否是最有效的策略?
还有其他更有效的方法在 numpy 数组中“正向填充”nan
值吗? (例如使用 numpy 向量化操作)
到目前为止,我已经尝试了所有的解决方案,下面是我的设置脚本:
import numba as nb
import numpy as np
import pandas as pd
def random_array():
choices = [1, 2, 3, 4, 5, 6, 7, 8, 9, np.nan]
out = np.random.choice(choices, size=(1000, 10))
return out
def loops_fill(arr):
out = arr.copy()
for row_idx in range(out.shape[0]):
for col_idx in range(1, out.shape[1]):
if np.isnan(out[row_idx, col_idx]):
out[row_idx, col_idx] = out[row_idx, col_idx - 1]
return out
@nb.jit
def numba_loops_fill(arr):
'''Numba decorator solution provided by shx2.'''
out = arr.copy()
for row_idx in range(out.shape[0]):
for col_idx in range(1, out.shape[1]):
if np.isnan(out[row_idx, col_idx]):
out[row_idx, col_idx] = out[row_idx, col_idx - 1]
return out
def pandas_fill(arr):
df = pd.DataFrame(arr)
df.fillna(method='ffill', axis=1, inplace=True)
out = df.as_matrix()
return out
def numpy_fill(arr):
'''Solution provided by Divakar.'''
mask = np.isnan(arr)
idx = np.where(~mask,np.arange(mask.shape[1]),0)
np.maximum.accumulate(idx,axis=1, out=idx)
out = arr[np.arange(idx.shape[0])[:,None], idx]
return out
然后是这个控制台输入:
%timeit -n 1000 loops_fill(random_array())
%timeit -n 1000 numba_loops_fill(random_array())
%timeit -n 1000 pandas_fill(random_array())
%timeit -n 1000 numpy_fill(random_array())
导致控制台输出:
1000 loops, best of 3: 9.64 ms per loop
1000 loops, best of 3: 377 µs per loop
1000 loops, best of 3: 455 µs per loop
1000 loops, best of 3: 351 µs per loop