how to filter out a null value from spark dataframe

I created a dataframe in spark with the following schema:

root
|-- user_id: long (nullable = false)
|-- event_id: long (nullable = false)
|-- invited: integer (nullable = false)
|-- day_diff: long (nullable = true)
|-- interested: integer (nullable = false)
|-- event_owner: long (nullable = false)
|-- friend_id: long (nullable = false)

And the data is shown below:

+----------+----------+-------+--------+----------+-----------+---------+
|   user_id|  event_id|invited|day_diff|interested|event_owner|friend_id|
+----------+----------+-------+--------+----------+-----------+---------+
|   4236494| 110357109|      0|      -1|         0|  937597069|     null|
|  78065188| 498404626|      0|       0|         0| 2904922087|     null|
| 282487230|2520855981|      0|      28|         0| 3749735525|     null|
| 335269852|1641491432|      0|       2|         0| 1490350911|     null|
| 437050836|1238456614|      0|       2|         0|  991277599|     null|
| 447244169|2095085551|      0|      -1|         0| 1579858878|     null|
| 516353916|1076364848|      0|       3|         1| 3597645735|     null|
| 528218683|1151525474|      0|       1|         0| 3433080956|     null|
| 531967718|3632072502|      0|       1|         0| 3863085861|     null|
| 627948360|2823119321|      0|       0|         0| 4092665803|     null|
| 811791433|3513954032|      0|       2|         0|  415464198|     null|
| 830686203|  99027353|      0|       0|         0| 3549822604|     null|
|1008893291|1115453150|      0|       2|         0| 2245155244|     null|
|1239364869|2824096896|      0|       2|         1| 2579294650|     null|
|1287950172|1076364848|      0|       0|         0| 3597645735|     null|
|1345896548|2658555390|      0|       1|         0| 2025118823|     null|
|1354205322|2564682277|      0|       3|         0| 2563033185|     null|
|1408344828|1255629030|      0|      -1|         1|  804901063|     null|
|1452633375|1334001859|      0|       4|         0| 1488588320|     null|
|1625052108|3297535757|      0|       3|         0| 1972598895|     null|
+----------+----------+-------+--------+----------+-----------+---------+

I want to filter out the rows have null values in the field of "friend_id".

scala> val aaa = test.filter("friend_id is null")


scala> aaa.count

I got :res52: Long = 0 which is obvious not right. What is the right way to get it?

One more question, I want to replace the values in the friend_id field. I want to replace null with 0 and 1 for any other value except null. The code I can figure out is:

val aaa = train_friend_join.select($"user_id", $"event_id", $"invited", $"day_diff", $"interested", $"event_owner", ($"friend_id" != null)?1:0)

This code also doesn't work. Can anyone tell me how can I fix it? Thanks

273198 次浏览
df.where(df.col("friend_id").isNull)

I use the following code to solve my question. It works. But as we all know, I work around a country's mile to solve it. So, is there a short cut for that? Thanks

def filter_null(field : Any) : Int = field match {
case null => 0
case _    => 1
}


val test = train_event_join.join(
user_friends_pair,
train_event_join("user_id") === user_friends_pair("user_id") &&
train_event_join("event_owner") === user_friends_pair("friend_id"),
"left"
).select(
train_event_join("user_id"),
train_event_join("event_id"),
train_event_join("invited"),
train_event_join("day_diff"),
train_event_join("interested"),
train_event_join("event_owner"),
user_friends_pair("friend_id")
).rdd.map{
line => (
line(0).toString.toLong,
line(1).toString.toLong,
line(2).toString.toLong,
line(3).toString.toLong,
line(4).toString.toLong,
line(5).toString.toLong,
filter_null(line(6))
)
}.toDF("user_id", "event_id", "invited", "day_diff", "interested", "event_owner", "creator_is_friend")

Let's say you have this data setup (so that results are reproducible):

// declaring data types
case class Company(cName: String, cId: String, details: String)
case class Employee(name: String, id: String, email: String, company: Company)


// setting up example data
val e1 = Employee("n1", null, "n1@c1.com", Company("c1", "1", "d1"))
val e2 = Employee("n2", "2", "n2@c1.com", Company("c1", "1", "d1"))
val e3 = Employee("n3", "3", "n3@c1.com", Company("c1", "1", "d1"))
val e4 = Employee("n4", "4", "n4@c2.com", Company("c2", "2", "d2"))
val e5 = Employee("n5", null, "n5@c2.com", Company("c2", "2", "d2"))
val e6 = Employee("n6", "6", "n6@c2.com", Company("c2", "2", "d2"))
val e7 = Employee("n7", "7", "n7@c3.com", Company("c3", "3", "d3"))
val e8 = Employee("n8", "8", "n8@c3.com", Company("c3", "3", "d3"))
val employees = Seq(e1, e2, e3, e4, e5, e6, e7, e8)
val df = sc.parallelize(employees).toDF

Data is:

+----+----+---------+---------+
|name|  id|    email|  company|
+----+----+---------+---------+
|  n1|null|n1@c1.com|[c1,1,d1]|
|  n2|   2|n2@c1.com|[c1,1,d1]|
|  n3|   3|n3@c1.com|[c1,1,d1]|
|  n4|   4|n4@c2.com|[c2,2,d2]|
|  n5|null|n5@c2.com|[c2,2,d2]|
|  n6|   6|n6@c2.com|[c2,2,d2]|
|  n7|   7|n7@c3.com|[c3,3,d3]|
|  n8|   8|n8@c3.com|[c3,3,d3]|
+----+----+---------+---------+

Now to filter employees with null ids, you will do --

df.filter("id is null").show

which will correctly show you following:

+----+----+---------+---------+
|name|  id|    email|  company|
+----+----+---------+---------+
|  n1|null|n1@c1.com|[c1,1,d1]|
|  n5|null|n5@c2.com|[c2,2,d2]|
+----+----+---------+---------+

Coming to the second part of your question, you can replace the null ids with 0 and other values with 1 with this --

df.withColumn("id", when($"id".isNull, 0).otherwise(1)).show

This results in:

+----+---+---------+---------+
|name| id|    email|  company|
+----+---+---------+---------+
|  n1|  0|n1@c1.com|[c1,1,d1]|
|  n2|  1|n2@c1.com|[c1,1,d1]|
|  n3|  1|n3@c1.com|[c1,1,d1]|
|  n4|  1|n4@c2.com|[c2,2,d2]|
|  n5|  0|n5@c2.com|[c2,2,d2]|
|  n6|  1|n6@c2.com|[c2,2,d2]|
|  n7|  1|n7@c3.com|[c3,3,d3]|
|  n8|  1|n8@c3.com|[c3,3,d3]|
+----+---+---------+---------+

From the hint from Michael Kopaniov, below works

df.where(df("id").isNotNull).show

Or like df.filter($"friend_id".isNotNull)

A good solution for me was to drop the rows with any null values:

Dataset<Row> filtered = df.filter(row => !row.anyNull);

In case one is interested in the other case, just call row.anyNull. (Spark 2.1.0 using Java API)

Here is a solution for spark in Java. To select data rows containing nulls. When you have Dataset data, you do:

Dataset<Row> containingNulls =  data.where(data.col("COLUMN_NAME").isNull())

To filter out data without nulls you do:

Dataset<Row> withoutNulls = data.where(data.col("COLUMN_NAME").isNotNull())

Often dataframes contain columns of type String where instead of nulls we have empty strings like "". To filter out such data as well we do:

Dataset<Row> withoutNullsAndEmpty = data.where(data.col("COLUMN_NAME").isNotNull().and(data.col("COLUMN_NAME").notEqual("")))

There are two ways to do it: creating filter condition 1) Manually 2) Dynamically.

Sample DataFrame:

val df = spark.createDataFrame(Seq(
(0, "a1", "b1", "c1", "d1"),
(1, "a2", "b2", "c2", "d2"),
(2, "a3", "b3", null, "d3"),
(3, "a4", null, "c4", "d4"),
(4, null, "b5", "c5", "d5")
)).toDF("id", "col1", "col2", "col3", "col4")


+---+----+----+----+----+
| id|col1|col2|col3|col4|
+---+----+----+----+----+
|  0|  a1|  b1|  c1|  d1|
|  1|  a2|  b2|  c2|  d2|
|  2|  a3|  b3|null|  d3|
|  3|  a4|null|  c4|  d4|
|  4|null|  b5|  c5|  d5|
+---+----+----+----+----+

1) Creating filter condition manually i.e. using DataFrame where or filter function

df.filter(col("col1").isNotNull && col("col2").isNotNull).show

or

df.where("col1 is not null and col2 is not null").show

Result:

+---+----+----+----+----+
| id|col1|col2|col3|col4|
+---+----+----+----+----+
|  0|  a1|  b1|  c1|  d1|
|  1|  a2|  b2|  c2|  d2|
|  2|  a3|  b3|null|  d3|
+---+----+----+----+----+

2) Creating filter condition dynamically: This is useful when we don't want any column to have null value and there are large number of columns, which is mostly the case.

To create the filter condition manually in these cases will waste a lot of time. In below code we are including all columns dynamically using map and reduce function on DataFrame columns:

val filterCond = df.columns.map(x=>col(x).isNotNull).reduce(_ && _)

How filterCond looks:

filterCond: org.apache.spark.sql.Column = (((((id IS NOT NULL) AND (col1 IS NOT NULL)) AND (col2 IS NOT NULL)) AND (col3 IS NOT NULL)) AND (col4 IS NOT NULL))

Filtering:

val filteredDf = df.filter(filterCond)

Result:

+---+----+----+----+----+
| id|col1|col2|col3|col4|
+---+----+----+----+----+
|  0|  a1|  b1|  c1|  d1|
|  1|  a2|  b2|  c2|  d2|
+---+----+----+----+----+

for the first question, it is correct you are filtering out nulls and hence count is zero.

for the second replacing: use like below:

val options = Map("path" -> "...\\ex.csv", "header" -> "true")
val dfNull = spark.sqlContext.load("com.databricks.spark.csv", options)


scala> dfNull.show


+----------+----------+-------+--------+----------+-----------+---------+
|   user_id|  event_id|invited|day_diff|interested|event_owner|friend_id|
+----------+----------+-------+--------+----------+-----------+---------+
|   4236494| 110357109|      0|      -1|         0|  937597069|     null|
|  78065188| 498404626|      0|       0|         0| 2904922087|     null|
| 282487230|2520855981|      0|      28|         0| 3749735525|     null|
| 335269852|1641491432|      0|       2|         0| 1490350911|     null|
| 437050836|1238456614|      0|       2|         0|  991277599|     null|
| 447244169|2095085551|      0|      -1|         0| 1579858878|        a|
| 516353916|1076364848|      0|       3|         1| 3597645735|        b|
| 528218683|1151525474|      0|       1|         0| 3433080956|        c|
| 531967718|3632072502|      0|       1|         0| 3863085861|     null|
| 627948360|2823119321|      0|       0|         0| 4092665803|     null|
| 811791433|3513954032|      0|       2|         0|  415464198|     null|
| 830686203|  99027353|      0|       0|         0| 3549822604|     null|
|1008893291|1115453150|      0|       2|         0| 2245155244|     null|
|1239364869|2824096896|      0|       2|         1| 2579294650|        d|
|1287950172|1076364848|      0|       0|         0| 3597645735|     null|
|1345896548|2658555390|      0|       1|         0| 2025118823|     null|
|1354205322|2564682277|      0|       3|         0| 2563033185|     null|
|1408344828|1255629030|      0|      -1|         1|  804901063|     null|
|1452633375|1334001859|      0|       4|         0| 1488588320|     null|
|1625052108|3297535757|      0|       3|         0| 1972598895|     null|
+----------+----------+-------+--------+----------+-----------+---------+


dfNull.withColumn("friend_idTmp", when($"friend_id".isNull, "1").otherwise("0")).drop($"friend_id").withColumnRenamed("friend_idTmp", "friend_id").show


+----------+----------+-------+--------+----------+-----------+---------+
|   user_id|  event_id|invited|day_diff|interested|event_owner|friend_id|
+----------+----------+-------+--------+----------+-----------+---------+
|   4236494| 110357109|      0|      -1|         0|  937597069|        1|
|  78065188| 498404626|      0|       0|         0| 2904922087|        1|
| 282487230|2520855981|      0|      28|         0| 3749735525|        1|
| 335269852|1641491432|      0|       2|         0| 1490350911|        1|
| 437050836|1238456614|      0|       2|         0|  991277599|        1|
| 447244169|2095085551|      0|      -1|         0| 1579858878|        0|
| 516353916|1076364848|      0|       3|         1| 3597645735|        0|
| 528218683|1151525474|      0|       1|         0| 3433080956|        0|
| 531967718|3632072502|      0|       1|         0| 3863085861|        1|
| 627948360|2823119321|      0|       0|         0| 4092665803|        1|
| 811791433|3513954032|      0|       2|         0|  415464198|        1|
| 830686203|  99027353|      0|       0|         0| 3549822604|        1|
|1008893291|1115453150|      0|       2|         0| 2245155244|        1|
|1239364869|2824096896|      0|       2|         1| 2579294650|        0|
|1287950172|1076364848|      0|       0|         0| 3597645735|        1|
|1345896548|2658555390|      0|       1|         0| 2025118823|        1|
|1354205322|2564682277|      0|       3|         0| 2563033185|        1|
|1408344828|1255629030|      0|      -1|         1|  804901063|        1|
|1452633375|1334001859|      0|       4|         0| 1488588320|        1|
|1625052108|3297535757|      0|       3|         0| 1972598895|        1|
+----------+----------+-------+--------+----------+-----------+---------+

Another easy way to filter out null values from multiple columns in spark dataframe. Please pay attention there is AND between columns.

df.filter(" COALESCE(col1, col2, col3, col4, col5, col6) IS NOT NULL")

If you need to filter out rows that contain any null (OR connected) please use

df.na.drop()

The following lines work well:

test.filter("friend_id is not null")
val df = Seq(
("1001", "1007"),
("1002", null),
("1003", "1005"),
(null, "1006")
).toDF("user_id", "friend_id")

Data is:

+-------+---------+
|user_id|friend_id|
+-------+---------+
|   1001|     1007|
|   1002|     null|
|   1003|     1005|
|   null|     1006|
+-------+---------+

Drop rows containing any null or NaN values in the specified columns of the Seq:

df.na.drop(Seq("friend_id"))
.show()

Output:

+-------+---------+
|user_id|friend_id|
+-------+---------+
|   1001|     1007|
|   1003|     1005|
|   null|     1006|
+-------+---------+

If do not specify columns, drop row as long as any column of a row contains null or NaN values:

df.na.drop()
.show()

Output:

+-------+---------+
|user_id|friend_id|
+-------+---------+
|   1001|     1007|
|   1003|     1005|
+-------+---------+