Math.Round(0.5) returns zero due to floating point rounding errors, so you'll need to add a rounding error amount to the original value to ensure it doesn't round down, eg.
// performing d = c * 3/4 where d can be pos or neg
d = ((c * a) + ((c>0? (b>>1):-(b>>1)))) / b;
// explanation:
// 1.) multiply: c * a
// 2.) if c is negative: (c>0? subtract half of the dividend
// (b>>1) is bit shift right = (b/2)
// if c is positive: else add half of the dividend
// 3.) do the division
// on a C51/52 (8bit embedded) or similar like ATmega the below code may execute in approx 12cpu cycles (not tested)
Extended from a tip somewhere else in here. Sorry, missed from where.
/* Example test: integer rounding example including negative*/
#include <stdio.h>
#include <string.h>
int main () {
//rounding negative int
// doing something like d = c * 3/4
int a=3;
int b=4;
int c=-5;
int d;
int s=c;
int e=c+10;
for(int f=s; f<=e; f++) {
printf("%d\t",f);
double cd=f, ad=a, bd=b , dd;
// d = c * 3/4 with double
dd = cd * ad / bd;
printf("%.2f\t",dd);
printf("%.1f\t",dd);
printf("%.0f\t",dd);
// try again with typecast have used that a lot in Borland C++ 35 years ago....... maybe evolution has overtaken it ;) ***
// doing div before mul on purpose
dd =(double)c * ((double)a / (double)b);
printf("%.2f\t",dd);
c=f;
// d = c * 3/4 with integer rounding
d = ((c * a) + ((c>0? (b>>1):-(b>>1)))) / b;
printf("%d\t",d);
puts("");
}
return 0;
}
/* test output
in 2f 1f 0f cast int
-5 -3.75 -3.8 -4 -3.75 -4
-4 -3.00 -3.0 -3 -3.75 -3
-3 -2.25 -2.2 -2 -3.00 -2
-2 -1.50 -1.5 -2 -2.25 -2
-1 -0.75 -0.8 -1 -1.50 -1
0 0.00 0.0 0 -0.75 0
1 0.75 0.8 1 0.00 1
2 1.50 1.5 2 0.75 2
3 2.25 2.2 2 1.50 2
4 3.00 3.0 3 2.25 3
5 3.75 3.8 4 3.00
// by the way evolution:
// Is there any decent small integer library out there for that by now?