用海运把热图的尺寸放大

我创建了一个海运热图

df1.index = pd.to_datetime(df1.index)
df1 = df1.set_index('TIMESTAMP')
df1 = df1.resample('30min').mean()
ax = sns.heatmap(df1.iloc[:, 1:6:], annot=True, linewidths=.5)

但是问题是当数据帧中有很多数据时,热图就会太小,而且里面的数值开始不清晰,就像附加的图像一样。

我怎样才能改变热图的大小,使其更大? 谢谢

剪辑

我试着:

df1.index = pd.to_datetime(df1.index)
fig, ax = plt.subplots(figsize=(10,10))         # Sample figsize in inches
sns.heatmap(df1.iloc[:, 1:6:], annot=True, linewidths=.5, ax=ax)
df1 = df1.set_index('TIMESTAMP')
df1 = df1.resample('1d').mean()
ax = sns.heatmap(df1.iloc[:, 1:6:], annot=True, linewidths=.5)

但我得到了这个错误:

KeyError                                  Traceback (most recent call last)
C:\Users\Demonstrator\Anaconda3\lib\site-packages\pandas\indexes\base.py in get_loc(self, key, method, tolerance)
1944             try:
-> 1945                 return self._engine.get_loc(key)
1946             except KeyError:


pandas\index.pyx in pandas.index.IndexEngine.get_loc (pandas\index.c:4154)()


pandas\index.pyx in pandas.index.IndexEngine.get_loc (pandas\index.c:4018)()


pandas\hashtable.pyx in pandas.hashtable.PyObjectHashTable.get_item (pandas\hashtable.c:12368)()


pandas\hashtable.pyx in pandas.hashtable.PyObjectHashTable.get_item (pandas\hashtable.c:12322)()


KeyError: 'TIMESTAMP'


During handling of the above exception, another exception occurred:


KeyError                                  Traceback (most recent call last)
<ipython-input-779-acaf05718dd8> in <module>()
2 fig, ax = plt.subplots(figsize=(10,10))         # Sample figsize in inches
3 sns.heatmap(df1.iloc[:, 1:6:], annot=True, linewidths=.5, ax=ax)
----> 4 df1 = df1.set_index('TIMESTAMP')
5 df1 = df1.resample('1d').mean()
6 ax = sns.heatmap(df1.iloc[:, 1:6:], annot=True, linewidths=.5)


C:\Users\Demonstrator\Anaconda3\lib\site-packages\pandas\core\frame.py in set_index(self, keys, drop, append, inplace, verify_integrity)
2835                 names.append(None)
2836             else:
-> 2837                 level = frame[col]._values
2838                 names.append(col)
2839                 if drop:


C:\Users\Demonstrator\Anaconda3\lib\site-packages\pandas\core\frame.py in __getitem__(self, key)
1995             return self._getitem_multilevel(key)
1996         else:
-> 1997             return self._getitem_column(key)
1998
1999     def _getitem_column(self, key):


C:\Users\Demonstrator\Anaconda3\lib\site-packages\pandas\core\frame.py in _getitem_column(self, key)
2002         # get column
2003         if self.columns.is_unique:
-> 2004             return self._get_item_cache(key)
2005
2006         # duplicate columns & possible reduce dimensionality


C:\Users\Demonstrator\Anaconda3\lib\site-packages\pandas\core\generic.py in _get_item_cache(self, item)
1348         res = cache.get(item)
1349         if res is None:
-> 1350             values = self._data.get(item)
1351             res = self._box_item_values(item, values)
1352             cache[item] = res


C:\Users\Demonstrator\Anaconda3\lib\site-packages\pandas\core\internals.py in get(self, item, fastpath)
3288
3289             if not isnull(item):
-> 3290                 loc = self.items.get_loc(item)
3291             else:
3292                 indexer = np.arange(len(self.items))[isnull(self.items)]


C:\Users\Demonstrator\Anaconda3\lib\site-packages\pandas\indexes\base.py in get_loc(self, key, method, tolerance)
1945                 return self._engine.get_loc(key)
1946             except KeyError:
-> 1947                 return self._engine.get_loc(self._maybe_cast_indexer(key))
1948
1949         indexer = self.get_indexer([key], method=method, tolerance=tolerance)


pandas\index.pyx in pandas.index.IndexEngine.get_loc (pandas\index.c:4154)()


pandas\index.pyx in pandas.index.IndexEngine.get_loc (pandas\index.c:4018)()


pandas\hashtable.pyx in pandas.hashtable.PyObjectHashTable.get_item (pandas\hashtable.c:12368)()


pandas\hashtable.pyx in pandas.hashtable.PyObjectHashTable.get_item (pandas\hashtable.c:12322)()


KeyError: 'TIMESTAMP'

剪辑

TypeError                                 Traceback (most recent call last)
<ipython-input-890-86bff697504a> in <module>()
2 df2.resample('30min').mean()
3 fig, ax = plt.subplots()
----> 4 ax = sns.heatmap(df2.iloc[:, 1:6:], annot=True, linewidths=.5)
5 ax.set_yticklabels([i.strftime("%Y-%m-%d %H:%M:%S") for i in df2.index], rotation=0)


C:\Users\Demonstrator\Anaconda3\lib\site-packages\seaborn\matrix.py in heatmap(data, vmin, vmax, cmap, center, robust, annot, fmt, annot_kws, linewidths, linecolor, cbar, cbar_kws, cbar_ax, square, ax, xticklabels, yticklabels, mask, **kwargs)
483     plotter = _HeatMapper(data, vmin, vmax, cmap, center, robust, annot, fmt,
484                           annot_kws, cbar, cbar_kws, xticklabels,
--> 485                           yticklabels, mask)
486
487     # Add the pcolormesh kwargs here


C:\Users\Demonstrator\Anaconda3\lib\site-packages\seaborn\matrix.py in __init__(self, data, vmin, vmax, cmap, center, robust, annot, fmt, annot_kws, cbar, cbar_kws, xticklabels, yticklabels, mask)
165         # Determine good default values for the colormapping
166         self._determine_cmap_params(plot_data, vmin, vmax,
--> 167                                     cmap, center, robust)
168
169         # Sort out the annotations


C:\Users\Demonstrator\Anaconda3\lib\site-packages\seaborn\matrix.py in _determine_cmap_params(self, plot_data, vmin, vmax, cmap, center, robust)
202                                cmap, center, robust):
203         """Use some heuristics to set good defaults for colorbar and range."""
--> 204         calc_data = plot_data.data[~np.isnan(plot_data.data)]
205         if vmin is None:
206             vmin = np.percentile(calc_data, 2) if robust else calc_data.min()


TypeError: ufunc 'isnan' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''
260750 次浏览

You could alter the figsize by passing a tuple showing the width, height parameters you would like to keep.

import matplotlib.pyplot as plt


fig, ax = plt.subplots(figsize=(10,10))         # Sample figsize in inches
sns.heatmap(df1.iloc[:, 1:6:], annot=True, linewidths=.5, ax=ax)

EDIT

I remember answering a similar question of yours where you had to set the index as TIMESTAMP. So, you could then do something like below:

df = df.set_index('TIMESTAMP')
df.resample('30min').mean()
fig, ax = plt.subplots()
ax = sns.heatmap(df.iloc[:, 1:6:], annot=True, linewidths=.5)
ax.set_yticklabels([i.strftime("%Y-%m-%d %H:%M:%S") for i in df.index], rotation=0)

For the head of the dataframe you posted, the plot would look like:

enter image description here

add plt.figure(figsize=(16,5)) before the sns.heatmap and play around with the figsize numbers till you get the desired size

...


plt.figure(figsize = (16,5))


ax = sns.heatmap(df1.iloc[:, 1:6:], annot=True, linewidths=.5)

I do not know how to solve this using code, but I do manually adjust the control panel at the right bottom in the plot figure, and adjust the figure size like:

f, ax = plt.subplots(figsize=(16, 12))

at the meantime until you get a matched size colobar. This worked for me.