有几篇关于如何将分类数据编码到 Sklearn 决策树的文章,但是从 Sklearn 的文档中,我们得到了这些
决策树的一些优点是:
(...)
能够处理数字和分类数据。其他技术通常专门用于分析只有一种类型变量的数据集。有关更多信息,请参见算法。
但是运行以下脚本
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
data = pd.DataFrame()
data['A'] = ['a','a','b','a']
data['B'] = ['b','b','a','b']
data['C'] = [0, 0, 1, 0]
data['Class'] = ['n','n','y','n']
tree = DecisionTreeClassifier()
tree.fit(data[['A','B','C']], data['Class'])
输出以下错误:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python2.7/site-packages/sklearn/tree/tree.py", line 154, in fit
X = check_array(X, dtype=DTYPE, accept_sparse="csc")
File "/usr/local/lib/python2.7/site-packages/sklearn/utils/validation.py", line 377, in check_array
array = np.array(array, dtype=dtype, order=order, copy=copy)
ValueError: could not convert string to float: b
我知道在 R 中有可能传递绝对数据,对于 Sklearn,有可能吗?