使用 Anaconda Python 2.7 Windows 10。
我正在用克拉斯的例子训练一个语言模型:
print('Build model...')
model = Sequential()
model.add(GRU(512, return_sequences=True, input_shape=(maxlen, len(chars))))
model.add(Dropout(0.2))
model.add(GRU(512, return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(len(chars)))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
def sample(a, temperature=1.0):
# helper function to sample an index from a probability array
a = np.log(a) / temperature
a = np.exp(a) / np.sum(np.exp(a))
return np.argmax(np.random.multinomial(1, a, 1))
# train the model, output generated text after each iteration
for iteration in range(1, 3):
print()
print('-' * 50)
print('Iteration', iteration)
model.fit(X, y, batch_size=128, nb_epoch=1)
start_index = random.randint(0, len(text) - maxlen - 1)
for diversity in [0.2, 0.5, 1.0, 1.2]:
print()
print('----- diversity:', diversity)
generated = ''
sentence = text[start_index: start_index + maxlen]
generated += sentence
print('----- Generating with seed: "' + sentence + '"')
sys.stdout.write(generated)
for i in range(400):
x = np.zeros((1, maxlen, len(chars)))
for t, char in enumerate(sentence):
x[0, t, char_indices[char]] = 1.
preds = model.predict(x, verbose=0)[0]
next_index = sample(preds, diversity)
next_char = indices_char[next_index]
generated += next_char
sentence = sentence[1:] + next_char
sys.stdout.write(next_char)
sys.stdout.flush()
print()
根据 Kera 文档,model.fit
方法返回一个 History 回调函数,该函数具有一个 History 属性,其中包含连续损失列表和其他指标。
hist = model.fit(X, y, validation_split=0.2)
print(hist.history)
在训练我的模型之后,如果我运行 print(model.history)
,我会得到错误:
AttributeError: 'Sequential' object has no attribute 'history'
在使用上述代码训练模型之后,如何返回模型历史记录?
更新
问题在于:
必须首先界定以下内容:
from keras.callbacks import History
history = History()
必须调用回调选项
model.fit(X_train, Y_train, nb_epoch=5, batch_size=16, callbacks=[history])
但现在如果我打印
print(history.History)
它回来了
{}
尽管我做了一个迭代。