You don't have to use threads. You can use another process to do the blocking work, for instance, maybe using the subprocess module. If you want to share data structures between different parts of your program then Twisted is a great library for giving yourself control of this, and I'd recommend it if you care about blocking and expect to have this trouble a lot. The bad news with Twisted is you have to rewrite your code to avoid any blocking, and there is a fair learning curve.
You can use threads to avoid blocking, but I'd regard this as a last resort, since it exposes you to a whole world of pain. Read a good book on concurrency before even thinking about using threads in production, e.g. Jean Bacon's "Concurrent Systems". I work with a bunch of people who do really cool high performance stuff with threads, and we don't introduce threads into projects unless we really need them.
The only "safe" way to do this, in any language, is to use a secondary process to do that timeout-thing, otherwise you need to build your code in such a way that it will time out safely by itself, for instance by checking the time elapsed in a loop or similar. If changing the method isn't an option, a thread will not suffice.
Why? Because you're risking leaving things in a bad state when you do. If the thread is simply killed mid-method, locks being held, etc. will just be held, and cannot be released.
So look at the process way, do not look at the thread way.
I'm not sure how cross-platform this might be, but using signals and alarm might be a good way of looking at this. With a little work you could make this completely generic as well and usable in any situation.
def timeout(func, args=(), kwargs={}, timeout_duration=1, default=None):
'''This function will spwan a thread and run the given function using the args, kwargs and
return the given default value if the timeout_duration is exceeded
'''
import threading
class InterruptableThread(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
self.result = default
def run(self):
try:
self.result = func(*args, **kwargs)
except:
self.result = default
it = InterruptableThread()
it.start()
it.join(timeout_duration)
if it.isAlive():
return it.result
else:
return it.result
Doing this from within a signal handler is dangerous: you might be inside an exception handler at the time the exception is raised, and leave things in a broken state. For example,
def function_with_enforced_timeout():
f = open_temporary_file()
try:
...
finally:
here()
unlink(f.filename)
If your exception is raised here(), the temporary file will never be deleted.
The solution here is for asynchronous exceptions to be postponed until the code is not inside exception-handling code (an except or finally block), but Python doesn't do that.
Note that this won't interrupt anything while executing native code; it'll only interrupt it when the function returns, so this may not help this particular case. (SIGALRM itself might interrupt the call that's blocking--but socket code typically simply retries after an EINTR.)
Doing this with threads is a better idea, since it's more portable than signals. Since you're starting a worker thread and blocking until it finishes, there are none of the usual concurrency worries. Unfortunately, there's no way to deliver an exception asynchronously to another thread in Python (other thread APIs can do this). It'll also have the same issue with sending an exception during an exception handler, and require the same fix.
Here's a Linux/OSX way to limit a function's running time. This is in case you don't want to use threads, and want your program to wait until the function ends, or the time limit expires.
from multiprocessing import Process
from time import sleep
def f(time):
sleep(time)
def run_with_limited_time(func, args, kwargs, time):
"""Runs a function with time limit
:param func: The function to run
:param args: The functions args, given as tuple
:param kwargs: The functions keywords, given as dict
:param time: The time limit in seconds
:return: True if the function ended successfully. False if it was terminated.
"""
p = Process(target=func, args=args, kwargs=kwargs)
p.start()
p.join(time)
if p.is_alive():
p.terminate()
return False
return True
if __name__ == '__main__':
print run_with_limited_time(f, (1.5, ), {}, 2.5) # True
print run_with_limited_time(f, (3.5, ), {}, 2.5) # False
python
rocks
A Done
timing
Traceback (most recent call last):
...
timeout.TimeoutError: execution expired
out
Notice that even if the TimeoutError is thrown, the decorated method will continue to run in a different thread. If you would also want this thread to be "stopped" see: Is there any way to kill a Thread in Python?
I prefer a context manager approach because it allows the execution of multiple python statements within a with time_limit statement. Because windows system does not have SIGALARM, a more portable and perhaps more straightforward method could be using a Timer
from contextlib import contextmanager
import threading
import _thread
class TimeoutException(Exception):
def __init__(self, msg=''):
self.msg = msg
@contextmanager
def time_limit(seconds, msg=''):
timer = threading.Timer(seconds, lambda: _thread.interrupt_main())
timer.start()
try:
yield
except KeyboardInterrupt:
raise TimeoutException("Timed out for operation {}".format(msg))
finally:
# if the action ends in specified time, timer is canceled
timer.cancel()
import time
# ends after 5 seconds
with time_limit(5, 'sleep'):
for i in range(10):
time.sleep(1)
# this will actually end after 10 seconds
with time_limit(5, 'sleep'):
time.sleep(10)
The key technique here is the use of _thread.interrupt_main to interrupt the main thread from the timer thread. One caveat is that the main thread does not always respond to the KeyboardInterrupt raised by the Timer quickly. For example, time.sleep() calls a system function so a KeyboardInterrupt will be handled after the sleep call.
The method from @user2283347 is tested working, but we want to get rid of the traceback messages. Use pass trick from Remove traceback in Python on Ctrl-C, the modified code is:
from contextlib import contextmanager
import threading
import _thread
class TimeoutException(Exception): pass
@contextmanager
def time_limit(seconds):
timer = threading.Timer(seconds, lambda: _thread.interrupt_main())
timer.start()
try:
yield
except KeyboardInterrupt:
pass
finally:
# if the action ends in specified time, timer is canceled
timer.cancel()
def timeout_svm_score(i):
#from sklearn import svm
#import numpy as np
#from IPython.core.display import display
#%store -r names X Y
clf = svm.SVC(kernel='linear', C=1).fit(np.nan_to_num(X[[names[i]]]), Y)
score = clf.score(np.nan_to_num(X[[names[i]]]),Y)
#scoressvm.append((score, names[i]))
display((score, names[i]))
%%time
with time_limit(5):
i=0
timeout_svm_score(i)
#Wall time: 14.2 s
%%time
with time_limit(20):
i=0
timeout_svm_score(i)
#(0.04541284403669725, '计划飞行时间')
#Wall time: 16.1 s
%%time
with time_limit(5):
i=14
timeout_svm_score(i)
#Wall time: 5h 43min 41s
We can see that this method may need far long time to interrupt the calculation, we asked for 5 seconds, but it work out in 5 hours.
And now an example on how it works: lets say you have a huge list of items to be processed and you are iterating your function over those items. However, for some strange reason, your function get stuck on item n, without raising an exception. You need to other items to be processed, the more the better. In this case, you can set a timeout for processing each item:
import time
import func_timeout
def my_function(n):
"""Sleep for n seconds and return n squared."""
print(f'Processing {n}')
time.sleep(n)
return n**2
def main_controller(max_wait_time, all_data):
"""
Feed my_function with a list of itens to process (all_data).
However, if max_wait_time is exceeded, return the item and a fail info.
"""
res = []
for data in all_data:
try:
my_square = func_timeout.func_timeout(
max_wait_time, my_function, args=[data]
)
res.append((my_square, 'processed'))
except func_timeout.FunctionTimedOut:
print('error')
res.append((data, 'fail'))
continue
return res
timeout_time = 2.1 # my time limit
all_data = range(1, 10) # the data to be processed
res = main_controller(timeout_time, all_data)
print(res)
This code works for Windows Server Datacenter 2016 with python 3.7.3 and I didn't tested on Unix, after mixing some answers from Google and StackOverflow, it finally worked for me like this:
from multiprocessing import Process, Lock
import time
import os
def f(lock,id,sleepTime):
lock.acquire()
print("I'm P"+str(id)+" Process ID: "+str(os.getpid()))
lock.release()
time.sleep(sleepTime) #sleeps for some time
print("Process: "+str(id)+" took this much time:"+str(sleepTime))
time.sleep(sleepTime)
print("Process: "+str(id)+" took this much time:"+str(sleepTime*2))
if __name__ == '__main__':
timeout_function=float(9) # 9 seconds for max function time
print("Main Process ID: "+str(os.getpid()))
lock=Lock()
p1=Process(target=f, args=(lock,1,6,)) #Here you can change from 6 to 3 for instance, so you can watch the behavior
start=time.time()
print(type(start))
p1.start()
if p1.is_alive():
print("process running a")
else:
print("process not running a")
while p1.is_alive():
timeout=time.time()
if timeout-start > timeout_function:
p1.terminate()
print("process terminated")
print("watching, time passed: "+str(timeout-start) )
time.sleep(1)
if p1.is_alive():
print("process running b")
else:
print("process not running b")
p1.join()
if p1.is_alive():
print("process running c")
else:
print("process not running c")
end=time.time()
print("I am the main process, the two processes are done")
print("Time taken:- "+str(end-start)+" secs") #MainProcess terminates at approx ~ 5 secs.
time.sleep(5) # To see if on Task Manager the child process is really being terminated, and it is
print("finishing")
Then I used .terminate() to kill the child process. You can see that the function f calls 2 prints, one after 5 seconds and another after 10 seconds. However, with a 7 seconds sleep and the terminate(), it does not show the last print.