在 Spark Scala 中重命名 DataFrame 的列名

我正在尝试转换 Spark-Scala DataFrame的所有标题/列名。到目前为止,我想出了以下代码,它只替换一个列名。

for( i <- 0 to origCols.length - 1) {
df.withColumnRenamed(
df.columns(i),
df.columns(i).toLowerCase
);
}
228392 次浏览

If structure is flat:

val df = Seq((1L, "a", "foo", 3.0)).toDF
df.printSchema
// root
//  |-- _1: long (nullable = false)
//  |-- _2: string (nullable = true)
//  |-- _3: string (nullable = true)
//  |-- _4: double (nullable = false)

the simplest thing you can do is to use toDF method:

val newNames = Seq("id", "x1", "x2", "x3")
val dfRenamed = df.toDF(newNames: _*)


dfRenamed.printSchema
// root
// |-- id: long (nullable = false)
// |-- x1: string (nullable = true)
// |-- x2: string (nullable = true)
// |-- x3: double (nullable = false)

If you want to rename individual columns you can use either select with alias:

df.select($"_1".alias("x1"))

which can be easily generalized to multiple columns:

val lookup = Map("_1" -> "foo", "_3" -> "bar")


df.select(df.columns.map(c => col(c).as(lookup.getOrElse(c, c))): _*)

or withColumnRenamed:

df.withColumnRenamed("_1", "x1")

which use with foldLeft to rename multiple columns:

lookup.foldLeft(df)((acc, ca) => acc.withColumnRenamed(ca._1, ca._2))

With nested structures (structs) one possible option is renaming by selecting a whole structure:

val nested = spark.read.json(sc.parallelize(Seq(
"""{"foobar": {"foo": {"bar": {"first": 1.0, "second": 2.0}}}, "id": 1}"""
)))


nested.printSchema
// root
//  |-- foobar: struct (nullable = true)
//  |    |-- foo: struct (nullable = true)
//  |    |    |-- bar: struct (nullable = true)
//  |    |    |    |-- first: double (nullable = true)
//  |    |    |    |-- second: double (nullable = true)
//  |-- id: long (nullable = true)


@transient val foobarRenamed = struct(
struct(
struct(
$"foobar.foo.bar.first".as("x"), $"foobar.foo.bar.first".as("y")
).alias("point")
).alias("location")
).alias("record")


nested.select(foobarRenamed, $"id").printSchema
// root
//  |-- record: struct (nullable = false)
//  |    |-- location: struct (nullable = false)
//  |    |    |-- point: struct (nullable = false)
//  |    |    |    |-- x: double (nullable = true)
//  |    |    |    |-- y: double (nullable = true)
//  |-- id: long (nullable = true)

Note that it may affect nullability metadata. Another possibility is to rename by casting:

nested.select($"foobar".cast(
"struct<location:struct<point:struct<x:double,y:double>>>"
).alias("record")).printSchema


// root
//  |-- record: struct (nullable = true)
//  |    |-- location: struct (nullable = true)
//  |    |    |-- point: struct (nullable = true)
//  |    |    |    |-- x: double (nullable = true)
//  |    |    |    |-- y: double (nullable = true)

or:

import org.apache.spark.sql.types._


nested.select($"foobar".cast(
StructType(Seq(
StructField("location", StructType(Seq(
StructField("point", StructType(Seq(
StructField("x", DoubleType), StructField("y", DoubleType)))))))))
).alias("record")).printSchema


// root
//  |-- record: struct (nullable = true)
//  |    |-- location: struct (nullable = true)
//  |    |    |-- point: struct (nullable = true)
//  |    |    |    |-- x: double (nullable = true)
//  |    |    |    |-- y: double (nullable = true)

For those of you interested in PySpark version (actually it's same in Scala - see comment below) :

    merchants_df_renamed = merchants_df.toDF(
'merchant_id', 'category', 'subcategory', 'merchant')


merchants_df_renamed.printSchema()

Result:

root
|-- merchant_id: integer (nullable = true)
|-- category: string (nullable = true)
|-- subcategory: string (nullable = true)
|-- merchant: string (nullable = true)

def aliasAllColumns(t: DataFrame, p: String = "", s: String = ""): DataFrame =
{
t.select( t.columns.map { c => t.col(c).as( p + c + s) } : _* )
}

In case is isn't obvious, this adds a prefix and a suffix to each of the current column names. This can be useful when you have two tables with one or more columns having the same name, and you wish to join them but still be able to disambiguate the columns in the resultant table. It sure would be nice if there were a similar way to do this in "normal" SQL.

Suppose the dataframe df has 3 columns id1, name1, price1 and you wish to rename them to id2, name2, price2

val list = List("id2", "name2", "price2")
import spark.implicits._
val df2 = df.toDF(list:_*)
df2.columns.foreach(println)

I found this approach useful in many cases.

tow table join not rename the joined key

// method 1: create a new DF
day1 = day1.toDF(day1.columns.map(x => if (x.equals(key)) x else s"${x}_d1"): _*)


// method 2: use withColumnRenamed
for ((x, y) <- day1.columns.filter(!_.equals(key)).map(x => (x, s"${x}_d1"))) {
day1 = day1.withColumnRenamed(x, y)
}

works!

Sometime we have the column name is below format in SQLServer or MySQL table


Ex  : Account Number,customer number


But Hive tables do not support column name containing spaces, so please use below solution to rename your old column names.


Solution:


val renamedColumns = df.columns.map(c => df(c).as(c.replaceAll(" ", "_").toLowerCase()))
df = df.select(renamedColumns: _*)