最佳答案
I am trying to concat the following dataframes:
df1
price side timestamp
timestamp
2016-01-04 00:01:15.631331072 0.7286 2 1451865675631331
2016-01-04 00:01:15.631399936 0.7286 2 1451865675631400
2016-01-04 00:01:15.631860992 0.7286 2 1451865675631861
2016-01-04 00:01:15.631866112 0.7286 2 1451865675631866
and:
df2
bid bid_size offer offer_size
timestamp
2016-01-04 00:00:31.331441920 0.7284 4000000 0.7285 1000000
2016-01-04 00:00:53.631324928 0.7284 4000000 0.7290 4000000
2016-01-04 00:01:03.131234048 0.7284 5000000 0.7286 4000000
2016-01-04 00:01:12.131444992 0.7285 1000000 0.7286 4000000
2016-01-04 00:01:15.631364096 0.7285 4000000 0.7290 4000000
With
data = pd.concat([df1,df2], axis=1)
But I get the follwing output:
InvalidIndexError Traceback (most recent call last)
<ipython-input-38-2e88458f01d7> in <module>()
----> 1 data = pd.concat([df1,df2], axis=1)
2 data = data.fillna(method='pad')
3 data = data.fillna(method='bfill')
4 data['timestamp'] = data.index.values#converting to datetime
5 data['timestamp'] = pd.to_datetime(data['timestamp'])#converting to datetime
/usr/local/lib/python2.7/site-packages/pandas/tools/merge.pyc in concat(objs, axis, join, join_axes, ignore_index, keys, levels, names, verify_integrity, copy)
810 keys=keys, levels=levels, names=names,
811 verify_integrity=verify_integrity,
--> 812 copy=copy)
813 return op.get_result()
814
/usr/local/lib/python2.7/site-packages/pandas/tools/merge.pyc in __init__(self, objs, axis, join, join_axes, keys, levels, names, ignore_index, verify_integrity, copy)
947 self.copy = copy
948
--> 949 self.new_axes = self._get_new_axes()
950
951 def get_result(self):
/usr/local/lib/python2.7/site-packages/pandas/tools/merge.pyc in _get_new_axes(self)
1013 if i == self.axis:
1014 continue
-> 1015 new_axes[i] = self._get_comb_axis(i)
1016 else:
1017 if len(self.join_axes) != ndim - 1:
/usr/local/lib/python2.7/site-packages/pandas/tools/merge.pyc in _get_comb_axis(self, i)
1039 raise TypeError("Cannot concatenate list of %s" % types)
1040
-> 1041 return _get_combined_index(all_indexes, intersect=self.intersect)
1042
1043 def _get_concat_axis(self):
/usr/local/lib/python2.7/site-packages/pandas/core/index.pyc in _get_combined_index(indexes, intersect)
6120 index = index.intersection(other)
6121 return index
-> 6122 union = _union_indexes(indexes)
6123 return _ensure_index(union)
6124
/usr/local/lib/python2.7/site-packages/pandas/core/index.pyc in _union_indexes(indexes)
6149
6150 if hasattr(result, 'union_many'):
-> 6151 return result.union_many(indexes[1:])
6152 else:
6153 for other in indexes[1:]:
/usr/local/lib/python2.7/site-packages/pandas/tseries/index.pyc in union_many(self, others)
959 else:
960 tz = this.tz
--> 961 this = Index.union(this, other)
962 if isinstance(this, DatetimeIndex):
963 this.tz = tz
/usr/local/lib/python2.7/site-packages/pandas/core/index.pyc in union(self, other)
1553 result.extend([x for x in other._values if x not in value_set])
1554 else:
-> 1555 indexer = self.get_indexer(other)
1556 indexer, = (indexer == -1).nonzero()
1557
/usr/local/lib/python2.7/site-packages/pandas/core/index.pyc in get_indexer(self, target, method, limit, tolerance)
1890
1891 if not self.is_unique:
-> 1892 raise InvalidIndexError('Reindexing only valid with uniquely'
1893 ' valued Index objects')
1894
InvalidIndexError: Reindexing only valid with uniquely valued Index objects
I have removed additional columns and removed duplicates and NA where there could be a conflict - but I simply do not know what's wrong.