public class MySingleton {
private static object myLock = new object();
private static volatile MySingleton mySingleton = null;
private MySingleton() {
}
public static MySingleton GetInstance() {
if (mySingleton == null) { // 1st check
lock (myLock) {
if (mySingleton == null) { // 2nd (double) check
mySingleton = new MySingleton();
// Write-release semantics are implicitly handled by marking
// mySingleton with 'volatile', which inserts the necessary memory
// barriers between the constructor call and the write to mySingleton.
// The barriers created by the lock are not sufficient because
// the object is made visible before the lock is released.
}
}
}
// The barriers created by the lock are not sufficient because not all threads
// will acquire the lock. A fence for read-acquire semantics is needed between
// the test of mySingleton (above) and the use of its contents. This fence
// is automatically inserted because mySingleton is marked as 'volatile'.
return mySingleton;
}
}