是否有一个约束,将我的泛型方法限制为数字类型?

有人能告诉我是否有一种方法可以用泛型来限制泛型类型参数T:

  • Int16
  • Int32
  • Int64
  • UInt16
  • UInt32
  • UInt64

我知道where关键字,但找不到只有这些类型的接口,

喜欢的东西:

static bool IntegerFunction<T>(T value) where T : INumeric
143660 次浏览

这是没有限制的。对于任何想要使用泛型进行数值计算的人来说,这都是一个真正的问题。

更进一步说,我们需要

static bool GenericFunction<T>(T value)
where T : operators( +, -, /, * )

甚至

static bool GenericFunction<T>(T value)
where T : Add, Subtract

不幸的是,你只有接口、基类和关键字struct(必须是值类型)、class(必须是引用类型)和new()(必须有默认构造函数)

你可以把这个数字包装在其他东西中(类似INullable<T>),比如这里是codeproject


您可以在运行时应用该限制(通过对操作符进行反射或检查类型),但这首先就失去了使用泛型的优势。

也许你能做的就是

static bool IntegerFunction<T>(T value) where T: struct

不确定你是否能做到以下几点

static bool IntegerFunction<T>(T value) where T: struct, IComparable
, IFormattable, IConvertible, IComparable<T>, IEquatable<T>

对于如此特定的内容,为什么不为每种类型设置重载呢?列表很短,而且可能占用更少的内存。

我想知道和samjudson一样,为什么只对整数有效?如果是这样的话,你可能想要创建一个helper类或者类似的东西来保存你想要的所有类型。

如果你想要的只是整数,不要使用泛型,那不是泛型;或者更好的是,通过检查其类型来拒绝任何其他类型。

不幸的是,在这种情况下,只能在where子句中指定struct。不能具体指定Int16、Int32等,这看起来确实很奇怪,但我相信,在决定不允许在where子句中使用值类型的基础上,有一些深层的实现原因。

我想唯一的解决方案是执行运行时检查,这不幸地阻止了在编译时拾取问题。大概是这样的:-

static bool IntegerFunction<T>(T value) where T : struct {
if (typeof(T) != typeof(Int16)  &&
typeof(T) != typeof(Int32)  &&
typeof(T) != typeof(Int64)  &&
typeof(T) != typeof(UInt16) &&
typeof(T) != typeof(UInt32) &&
typeof(T) != typeof(UInt64)) {
throw new ArgumentException(
string.Format("Type '{0}' is not valid.", typeof(T).ToString()));
}


// Rest of code...
}

我知道这有点难看,但至少提供了所需的约束条件。

我还将研究此实现可能的性能影响,也许有更快的方法。

这个练习的意义是什么?

正如人们已经指出的,你可以让一个非泛型函数取最大的项,编译器会自动为你转换较小的整型。

static bool IntegerFunction(Int64 value) { }

如果您的函数处于性能关键的路径上(在我看来,这是不太可能的),您可以为所有需要的函数提供重载。

static bool IntegerFunction(Int64 value) { }
...
static bool IntegerFunction(Int16 value) { }

十多年后,这个特性终于在net 7中存在了。最通用的接口是INumber<TSelf>而不是INumeric(在System.Numerics命名空间中),而且它不仅包含整数类型。要只接受整型,可以考虑使用IBinaryInteger<TSelf>。使用原型的例子,神秘的IntegerFunction:

static bool IntegerFunction<T>(T value) where T : IBinaryInteger<T> {
return value > T.Zero;
}
Console.WriteLine(IntegerFunction(5));         // True
Console.WriteLine(IntegerFunction((sbyte)-5)); // False
Console.WriteLine(IntegerFunction((ulong)5));  // True

下面的答案(现在已经过时了)是作为一个历史的角度。

c#不支持这一点。Hejlsberg描述了不实现在布鲁斯·埃克尔的采访中特性的原因:

而且还不清楚增加的复杂性是否值得你得到的小收益。如果约束系统不直接支持您想做的事情,则可以使用工厂模式来完成。例如,你可以有一个Matrix<T>,在这个Matrix中你想定义一个点积方法。当然,这意味着你最终需要了解如何将两个T相乘,但你不能说这是一个约束,至少在Tintdoublefloat的情况下不能这样说。但是你可以做的是让你的Matrix接受一个Calculator<T>作为参数,在Calculator<T>中,有一个叫做Matrix0的方法。你去实现它并将它传递给Matrix

然而,这会导致相当复杂的代码,用户必须为他们想要使用的每个T提供自己的Calculator<T>实现。只要它不需要是可扩展的,也就是说,如果你只想支持固定数量的类型,比如intdouble,你可以使用一个相对简单的接口:

var mat = new Matrix<int>(w, h);

(GitHub Gist的最小实现。)

然而,一旦你希望用户能够提供他们自己的自定义类型,你就需要打开这个实现,以便用户可以提供他们自己的Calculator实例。例如,要实例化一个使用自定义十进制浮点实现DFP的矩阵,你必须编写以下代码:

var mat = new Matrix<DFP>(DfpCalculator.Instance, w, h);

并实现DfpCalculator : ICalculator<DFP>的所有成员。

另一种选择是使用策略类正如Sergey Shandar的回答中所讨论的,不幸的是它也有同样的限制。

这个问题有点像常见问题,所以我在维基上发布了这个(因为我之前发布过类似的问题,但这是一个较老的问题);无论如何……

你用的是什么版本的。net ?如果你使用。net 3.5,那么我在MiscUtil中有一个通用操作符实现(免费等)。

它有T Add<T>(T x, T y)这样的方法,以及其他不同类型的算术变量(如DateTime + TimeSpan)。

此外,这适用于所有内置、提升和定制操作符,并缓存委托以获得性能。

关于为什么这很棘手的一些额外的背景是在这里

你可能还想知道dynamic(4.0)也间接地解决了这个问题。

dynamic x = ..., y = ...
dynamic result = x + y; // does what you expect

我会使用一个通用的,你可以处理外部…

/// <summary>
/// Generic object copy of the same type
/// </summary>
/// <typeparam name="T">The type of object to copy</typeparam>
/// <param name="ObjectSource">The source object to copy</param>
public T CopyObject<T>(T ObjectSource)
{
T NewObject = System.Activator.CreateInstance<T>();


foreach (PropertyInfo p in ObjectSource.GetType().GetProperties())
NewObject.GetType().GetProperty(p.Name).SetValue(NewObject, p.GetValue(ObjectSource, null), null);


return NewObject;
}

当我试图重载泛型类型的操作符时,这个限制影响了我;由于没有“innumeric”约束,以及stackoverflow上的优秀人员乐于提供的一系列其他原因,操作不能在泛型类型上定义。

我想要的是

public struct Foo<T>
{
public T Value{ get; private set; }


public static Foo<T> operator +(Foo<T> LHS, Foo<T> RHS)
{
return new Foo<T> { Value = LHS.Value + RHS.Value; };
}
}

我已经使用。net4动态运行时类型解决了这个问题。

public struct Foo<T>
{
public T Value { get; private set; }


public static Foo<T> operator +(Foo<T> LHS, Foo<T> RHS)
{
return new Foo<T> { Value = LHS.Value + (dynamic)RHS.Value };
}
}

关于使用dynamic的两件事是

  1. 的性能。所有值类型都被装箱。
  2. 运行时错误。你“打败”了编译器,但失去了类型安全。如果泛型类型没有定义操作符,则会在执行期间抛出异常。

使用策略的解决方案:

interface INumericPolicy<T>
{
T Zero();
T Add(T a, T b);
// add more functions here, such as multiplication etc.
}


struct NumericPolicies:
INumericPolicy<int>,
INumericPolicy<long>
// add more INumericPolicy<> for different numeric types.
{
int INumericPolicy<int>.Zero() { return 0; }
long INumericPolicy<long>.Zero() { return 0; }
int INumericPolicy<int>.Add(int a, int b) { return a + b; }
long INumericPolicy<long>.Add(long a, long b) { return a + b; }
// implement all functions from INumericPolicy<> interfaces.


public static NumericPolicies Instance = new NumericPolicies();
}

算法:

static class Algorithms
{
public static T Sum<P, T>(this P p, params T[] a)
where P: INumericPolicy<T>
{
var r = p.Zero();
foreach(var i in a)
{
r = p.Add(r, i);
}
return r;
}


}

用法:

int i = NumericPolicies.Instance.Sum(1, 2, 3, 4, 5);
long l = NumericPolicies.Instance.Sum(1L, 2, 3, 4, 5);
NumericPolicies.Instance.Sum("www", "") // compile-time error.

该解决方案是编译时安全的。CityLizard框架提供了. net 4.0的编译版本。文件名为“lib/NETFramework4.0/ citylizad . policy .dll”。

它也可以在Nuget: https://www.nuget.org/packages/CityLizard/中使用。参见CityLizard.Policy.I结构。

目前还没有“好的”解决方案。但是,您可以显著地缩小类型参数,以排除许多与您假设的“INumeric”约束不匹配的情况,如上面haacks所示。

static bool IntegerFunction<T>(T值)where T: IComparable, IFormattable, IConvertible, IComparable<T>, IEquatable<T> {…< / p >

. net数字基元类型不共享任何允许它们用于计算的公共接口。可以定义自己的接口(例如ISignedWholeNumber)来执行这样的操作,定义包含单个Int16Int32等的结构并实现这些接口,然后有方法接受约束为ISignedWholeNumber的泛型类型,但必须将数值转换为你的结构类型可能是一个麻烦。

另一种方法是用静态属性bool Available {get;};定义静态类Int64Converter<T>,并为Int64 GetInt64(T value)T FromInt64(Int64 value)bool TryStoreInt64(Int64 value, ref T dest)定义静态委托。类构造函数可以使用硬编码来加载已知类型的委托,并可能使用反射来测试类型T是否实现了具有正确名称和签名的方法(如果它是类似于包含Int64并表示数字的结构体,但具有自定义ToString()方法)。这种方法将失去与编译时类型检查相关的优点,但仍能设法避免装箱操作,并且每个类型只需“检查”一次。在此之后,与该类型关联的操作将被委托分派替换。

我创建了一个小库功能来解决这些问题:

而不是:

public T DifficultCalculation<T>(T a, T b)
{
T result = a * b + a; // <== WILL NOT COMPILE!
return result;
}
Console.WriteLine(DifficultCalculation(2, 3)); // Should result in 8.

你可以这样写:

public T DifficultCalculation<T>(Number<T> a, Number<T> b)
{
Number<T> result = a * b + a;
return (T)result;
}
Console.WriteLine(DifficultCalculation(2, 3)); // Results in 8.

你可以在这里找到源代码:https://codereview.stackexchange.com/questions/26022/improvement-requested-for-generic-calculator-and-generic-number

考虑到这个问题的受欢迎程度和这样一个函数背后的兴趣,我很惊讶地看到,还没有涉及T4的答案。

在这个示例代码中,我将演示一个非常简单的示例,说明如何使用强大的模板引擎来完成编译器在幕后使用泛型所做的工作。

你可以简单地为你喜欢的每种类型生成你想要的函数,并相应地使用它(在编译时!),而不是通过循环和牺牲编译时的确定性。

为了做到这一点:

  • 创建一个名为GenericNumberMethodTemplate.tt的新文本模板文件。
  • 删除自动生成的代码(您将保留大部分代码,但有些代码不需要)。
  • 添加以下片段:
<#@ template language="C#" #>
<#@ output extension=".cs" #>
<#@ assembly name="System.Core" #>


<# Type[] types = new[] {
typeof(Int16), typeof(Int32), typeof(Int64),
typeof(UInt16), typeof(UInt32), typeof(UInt64)
};
#>


using System;
public static class MaxMath {
<# foreach (var type in types) {
#>
public static <#= type.Name #> Max (<#= type.Name #> val1, <#= type.Name #> val2) {
return val1 > val2 ? val1 : val2;
}
<#
} #>
}

就是这样。你现在完成了。

保存这个文件会自动编译成这个源文件:

using System;
public static class MaxMath {
public static Int16 Max (Int16 val1, Int16 val2) {
return val1 > val2 ? val1 : val2;
}
public static Int32 Max (Int32 val1, Int32 val2) {
return val1 > val2 ? val1 : val2;
}
public static Int64 Max (Int64 val1, Int64 val2) {
return val1 > val2 ? val1 : val2;
}
public static UInt16 Max (UInt16 val1, UInt16 val2) {
return val1 > val2 ? val1 : val2;
}
public static UInt32 Max (UInt32 val1, UInt32 val2) {
return val1 > val2 ? val1 : val2;
}
public static UInt64 Max (UInt64 val1, UInt64 val2) {
return val1 > val2 ? val1 : val2;
}
}

在你的main方法中,你可以验证你有编译时确定性:

namespace TTTTTest
{
class Program
{
static void Main(string[] args)
{
long val1 = 5L;
long val2 = 10L;
Console.WriteLine(MaxMath.Max(val1, val2));
Console.Read();
}
}
}

enter image description here

我先说一句:不,这并没有违反DRY原则。DRY原则的存在是为了防止人们在多个地方复制代码,从而导致应用程序变得难以维护。

这里的情况完全不同:如果您想要更改,那么您只需更改模板(对于您的所有生成都是一个单一的源代码!),然后就完成了。

为了在您自己的自定义定义中使用它,在生成的代码中添加一个名称空间声明(确保它与您将定义自己的实现的名称空间声明相同),并将类标记为partial。然后,将这些行添加到你的模板文件中,这样它就会被包含在最终的编译中:

<#@ import namespace="TheNameSpaceYouWillUse" #>
<#@ assembly name="$(TargetPath)" #>

说实话:这太酷了。

免责声明:此示例受到.NET中的元编程,作者:Kevin Hazzard和Jason Bock, Manning Publications的严重影响。

没有办法将模板限制为类型,但是可以根据类型定义不同的操作。作为泛型数值包的一部分,我需要一个泛型类来添加两个值。

    class Something<TCell>
{
internal static TCell Sum(TCell first, TCell second)
{
if (typeof(TCell) == typeof(int))
return (TCell)((object)(((int)((object)first)) + ((int)((object)second))));


if (typeof(TCell) == typeof(double))
return (TCell)((object)(((double)((object)first)) + ((double)((object)second))));


return second;
}
}

请注意,typeofs是在编译时计算的,因此if语句将被编译器删除。编译器还会删除虚假的类型转换。因此,在编译器中会解析为

        internal static int Sum(int first, int second)
{
return first + second;
}

如果你使用的是。net 4.0及更高版本,那么你可以只使用动态作为方法参数,并检查在运行时传递的动态参数类型是否为数字/整数类型。

如果传递的动态类型是数字/整数类型,则抛出异常。

实现这个想法的代码示例如下:

using System;
public class InvalidArgumentException : Exception
{
public InvalidArgumentException(string message) : base(message) {}
}
public class InvalidArgumentTypeException : InvalidArgumentException
{
public InvalidArgumentTypeException(string message) : base(message) {}
}
public class ArgumentTypeNotIntegerException : InvalidArgumentTypeException
{
public ArgumentTypeNotIntegerException(string message) : base(message) {}
}
public static class Program
{
private static bool IntegerFunction(dynamic n)
{
if (n.GetType() != typeof(Int16) &&
n.GetType() != typeof(Int32) &&
n.GetType() != typeof(Int64) &&
n.GetType() != typeof(UInt16) &&
n.GetType() != typeof(UInt32) &&
n.GetType() != typeof(UInt64))
throw new ArgumentTypeNotIntegerException("argument type is not integer type");
//code that implements IntegerFunction goes here
}
private static void Main()
{
Console.WriteLine("{0}",IntegerFunction(0)); //Compiles, no run time error and first line of output buffer is either "True" or "False" depends on the code that implements "Program.IntegerFunction" static method.
Console.WriteLine("{0}",IntegerFunction("string")); //Also compiles but it is run time error and exception of type "ArgumentTypeNotIntegerException" is thrown here.
Console.WriteLine("This is the last Console.WriteLine output"); //Never reached and executed due the run time error and the exception thrown on the second line of Program.Main static method.
}

当然,这个解决方案只能在运行时工作,而不能在编译时工作。

如果你想要一个总是在编译时工作而从不在运行时工作的解决方案,那么你必须用一个公共结构体/类包装动态,其重载的公共构造函数只接受所需类型的参数,并为结构体/类指定适当的名称。

被包装的动态始终是类/结构的私人成员,并且它是结构/类的唯一成员,结构/类的唯一成员的名称是"value",这是有意义的。

必要时,还必须定义和实现公共方法和/或操作符,用于类/结构的私有动态成员的所需类型。

同样有意义的是,结构/类有特殊/独特的构造函数,它接受动态作为参数,初始化它唯一的私有动态成员“value”,但这个构造函数的修饰符当然是私人

类/结构准备好后,将参数的IntegerFunction类型定义为已定义的类/结构。

实现这个想法的代码示例如下:

using System;
public struct Integer
{
private dynamic value;
private Integer(dynamic n) { this.value = n; }
public Integer(Int16 n) { this.value = n; }
public Integer(Int32 n) { this.value = n; }
public Integer(Int64 n) { this.value = n; }
public Integer(UInt16 n) { this.value = n; }
public Integer(UInt32 n) { this.value = n; }
public Integer(UInt64 n) { this.value = n; }
public Integer(Integer n) { this.value = n.value; }
public static implicit operator Int16(Integer n) { return n.value; }
public static implicit operator Int32(Integer n) { return n.value; }
public static implicit operator Int64(Integer n) { return n.value; }
public static implicit operator UInt16(Integer n) { return n.value; }
public static implicit operator UInt32(Integer n) { return n.value; }
public static implicit operator UInt64(Integer n) { return n.value; }
public static Integer operator +(Integer x, Int16 y) { return new Integer(x.value + y); }
public static Integer operator +(Integer x, Int32 y) { return new Integer(x.value + y); }
public static Integer operator +(Integer x, Int64 y) { return new Integer(x.value + y); }
public static Integer operator +(Integer x, UInt16 y) { return new Integer(x.value + y); }
public static Integer operator +(Integer x, UInt32 y) { return new Integer(x.value + y); }
public static Integer operator +(Integer x, UInt64 y) { return new Integer(x.value + y); }
public static Integer operator -(Integer x, Int16 y) { return new Integer(x.value - y); }
public static Integer operator -(Integer x, Int32 y) { return new Integer(x.value - y); }
public static Integer operator -(Integer x, Int64 y) { return new Integer(x.value - y); }
public static Integer operator -(Integer x, UInt16 y) { return new Integer(x.value - y); }
public static Integer operator -(Integer x, UInt32 y) { return new Integer(x.value - y); }
public static Integer operator -(Integer x, UInt64 y) { return new Integer(x.value - y); }
public static Integer operator *(Integer x, Int16 y) { return new Integer(x.value * y); }
public static Integer operator *(Integer x, Int32 y) { return new Integer(x.value * y); }
public static Integer operator *(Integer x, Int64 y) { return new Integer(x.value * y); }
public static Integer operator *(Integer x, UInt16 y) { return new Integer(x.value * y); }
public static Integer operator *(Integer x, UInt32 y) { return new Integer(x.value * y); }
public static Integer operator *(Integer x, UInt64 y) { return new Integer(x.value * y); }
public static Integer operator /(Integer x, Int16 y) { return new Integer(x.value / y); }
public static Integer operator /(Integer x, Int32 y) { return new Integer(x.value / y); }
public static Integer operator /(Integer x, Int64 y) { return new Integer(x.value / y); }
public static Integer operator /(Integer x, UInt16 y) { return new Integer(x.value / y); }
public static Integer operator /(Integer x, UInt32 y) { return new Integer(x.value / y); }
public static Integer operator /(Integer x, UInt64 y) { return new Integer(x.value / y); }
public static Integer operator %(Integer x, Int16 y) { return new Integer(x.value % y); }
public static Integer operator %(Integer x, Int32 y) { return new Integer(x.value % y); }
public static Integer operator %(Integer x, Int64 y) { return new Integer(x.value % y); }
public static Integer operator %(Integer x, UInt16 y) { return new Integer(x.value % y); }
public static Integer operator %(Integer x, UInt32 y) { return new Integer(x.value % y); }
public static Integer operator %(Integer x, UInt64 y) { return new Integer(x.value % y); }
public static Integer operator +(Integer x, Integer y) { return new Integer(x.value + y.value); }
public static Integer operator -(Integer x, Integer y) { return new Integer(x.value - y.value); }
public static Integer operator *(Integer x, Integer y) { return new Integer(x.value * y.value); }
public static Integer operator /(Integer x, Integer y) { return new Integer(x.value / y.value); }
public static Integer operator %(Integer x, Integer y) { return new Integer(x.value % y.value); }
public static bool operator ==(Integer x, Int16 y) { return x.value == y; }
public static bool operator !=(Integer x, Int16 y) { return x.value != y; }
public static bool operator ==(Integer x, Int32 y) { return x.value == y; }
public static bool operator !=(Integer x, Int32 y) { return x.value != y; }
public static bool operator ==(Integer x, Int64 y) { return x.value == y; }
public static bool operator !=(Integer x, Int64 y) { return x.value != y; }
public static bool operator ==(Integer x, UInt16 y) { return x.value == y; }
public static bool operator !=(Integer x, UInt16 y) { return x.value != y; }
public static bool operator ==(Integer x, UInt32 y) { return x.value == y; }
public static bool operator !=(Integer x, UInt32 y) { return x.value != y; }
public static bool operator ==(Integer x, UInt64 y) { return x.value == y; }
public static bool operator !=(Integer x, UInt64 y) { return x.value != y; }
public static bool operator ==(Integer x, Integer y) { return x.value == y.value; }
public static bool operator !=(Integer x, Integer y) { return x.value != y.value; }
public override bool Equals(object obj) { return this == (Integer)obj; }
public override int GetHashCode() { return this.value.GetHashCode(); }
public override string ToString() { return this.value.ToString(); }
public static bool operator >(Integer x, Int16 y) { return x.value > y; }
public static bool operator <(Integer x, Int16 y) { return x.value < y; }
public static bool operator >(Integer x, Int32 y) { return x.value > y; }
public static bool operator <(Integer x, Int32 y) { return x.value < y; }
public static bool operator >(Integer x, Int64 y) { return x.value > y; }
public static bool operator <(Integer x, Int64 y) { return x.value < y; }
public static bool operator >(Integer x, UInt16 y) { return x.value > y; }
public static bool operator <(Integer x, UInt16 y) { return x.value < y; }
public static bool operator >(Integer x, UInt32 y) { return x.value > y; }
public static bool operator <(Integer x, UInt32 y) { return x.value < y; }
public static bool operator >(Integer x, UInt64 y) { return x.value > y; }
public static bool operator <(Integer x, UInt64 y) { return x.value < y; }
public static bool operator >(Integer x, Integer y) { return x.value > y.value; }
public static bool operator <(Integer x, Integer y) { return x.value < y.value; }
public static bool operator >=(Integer x, Int16 y) { return x.value >= y; }
public static bool operator <=(Integer x, Int16 y) { return x.value <= y; }
public static bool operator >=(Integer x, Int32 y) { return x.value >= y; }
public static bool operator <=(Integer x, Int32 y) { return x.value <= y; }
public static bool operator >=(Integer x, Int64 y) { return x.value >= y; }
public static bool operator <=(Integer x, Int64 y) { return x.value <= y; }
public static bool operator >=(Integer x, UInt16 y) { return x.value >= y; }
public static bool operator <=(Integer x, UInt16 y) { return x.value <= y; }
public static bool operator >=(Integer x, UInt32 y) { return x.value >= y; }
public static bool operator <=(Integer x, UInt32 y) { return x.value <= y; }
public static bool operator >=(Integer x, UInt64 y) { return x.value >= y; }
public static bool operator <=(Integer x, UInt64 y) { return x.value <= y; }
public static bool operator >=(Integer x, Integer y) { return x.value >= y.value; }
public static bool operator <=(Integer x, Integer y) { return x.value <= y.value; }
public static Integer operator +(Int16 x, Integer y) { return new Integer(x + y.value); }
public static Integer operator +(Int32 x, Integer y) { return new Integer(x + y.value); }
public static Integer operator +(Int64 x, Integer y) { return new Integer(x + y.value); }
public static Integer operator +(UInt16 x, Integer y) { return new Integer(x + y.value); }
public static Integer operator +(UInt32 x, Integer y) { return new Integer(x + y.value); }
public static Integer operator +(UInt64 x, Integer y) { return new Integer(x + y.value); }
public static Integer operator -(Int16 x, Integer y) { return new Integer(x - y.value); }
public static Integer operator -(Int32 x, Integer y) { return new Integer(x - y.value); }
public static Integer operator -(Int64 x, Integer y) { return new Integer(x - y.value); }
public static Integer operator -(UInt16 x, Integer y) { return new Integer(x - y.value); }
public static Integer operator -(UInt32 x, Integer y) { return new Integer(x - y.value); }
public static Integer operator -(UInt64 x, Integer y) { return new Integer(x - y.value); }
public static Integer operator *(Int16 x, Integer y) { return new Integer(x * y.value); }
public static Integer operator *(Int32 x, Integer y) { return new Integer(x * y.value); }
public static Integer operator *(Int64 x, Integer y) { return new Integer(x * y.value); }
public static Integer operator *(UInt16 x, Integer y) { return new Integer(x * y.value); }
public static Integer operator *(UInt32 x, Integer y) { return new Integer(x * y.value); }
public static Integer operator *(UInt64 x, Integer y) { return new Integer(x * y.value); }
public static Integer operator /(Int16 x, Integer y) { return new Integer(x / y.value); }
public static Integer operator /(Int32 x, Integer y) { return new Integer(x / y.value); }
public static Integer operator /(Int64 x, Integer y) { return new Integer(x / y.value); }
public static Integer operator /(UInt16 x, Integer y) { return new Integer(x / y.value); }
public static Integer operator /(UInt32 x, Integer y) { return new Integer(x / y.value); }
public static Integer operator /(UInt64 x, Integer y) { return new Integer(x / y.value); }
public static Integer operator %(Int16 x, Integer y) { return new Integer(x % y.value); }
public static Integer operator %(Int32 x, Integer y) { return new Integer(x % y.value); }
public static Integer operator %(Int64 x, Integer y) { return new Integer(x % y.value); }
public static Integer operator %(UInt16 x, Integer y) { return new Integer(x % y.value); }
public static Integer operator %(UInt32 x, Integer y) { return new Integer(x % y.value); }
public static Integer operator %(UInt64 x, Integer y) { return new Integer(x % y.value); }
public static bool operator ==(Int16 x, Integer y) { return x == y.value; }
public static bool operator !=(Int16 x, Integer y) { return x != y.value; }
public static bool operator ==(Int32 x, Integer y) { return x == y.value; }
public static bool operator !=(Int32 x, Integer y) { return x != y.value; }
public static bool operator ==(Int64 x, Integer y) { return x == y.value; }
public static bool operator !=(Int64 x, Integer y) { return x != y.value; }
public static bool operator ==(UInt16 x, Integer y) { return x == y.value; }
public static bool operator !=(UInt16 x, Integer y) { return x != y.value; }
public static bool operator ==(UInt32 x, Integer y) { return x == y.value; }
public static bool operator !=(UInt32 x, Integer y) { return x != y.value; }
public static bool operator ==(UInt64 x, Integer y) { return x == y.value; }
public static bool operator !=(UInt64 x, Integer y) { return x != y.value; }
public static bool operator >(Int16 x, Integer y) { return x > y.value; }
public static bool operator <(Int16 x, Integer y) { return x < y.value; }
public static bool operator >(Int32 x, Integer y) { return x > y.value; }
public static bool operator <(Int32 x, Integer y) { return x < y.value; }
public static bool operator >(Int64 x, Integer y) { return x > y.value; }
public static bool operator <(Int64 x, Integer y) { return x < y.value; }
public static bool operator >(UInt16 x, Integer y) { return x > y.value; }
public static bool operator <(UInt16 x, Integer y) { return x < y.value; }
public static bool operator >(UInt32 x, Integer y) { return x > y.value; }
public static bool operator <(UInt32 x, Integer y) { return x < y.value; }
public static bool operator >(UInt64 x, Integer y) { return x > y.value; }
public static bool operator <(UInt64 x, Integer y) { return x < y.value; }
public static bool operator >=(Int16 x, Integer y) { return x >= y.value; }
public static bool operator <=(Int16 x, Integer y) { return x <= y.value; }
public static bool operator >=(Int32 x, Integer y) { return x >= y.value; }
public static bool operator <=(Int32 x, Integer y) { return x <= y.value; }
public static bool operator >=(Int64 x, Integer y) { return x >= y.value; }
public static bool operator <=(Int64 x, Integer y) { return x <= y.value; }
public static bool operator >=(UInt16 x, Integer y) { return x >= y.value; }
public static bool operator <=(UInt16 x, Integer y) { return x <= y.value; }
public static bool operator >=(UInt32 x, Integer y) { return x >= y.value; }
public static bool operator <=(UInt32 x, Integer y) { return x <= y.value; }
public static bool operator >=(UInt64 x, Integer y) { return x >= y.value; }
public static bool operator <=(UInt64 x, Integer y) { return x <= y.value; }
}
public static class Program
{
private static bool IntegerFunction(Integer n)
{
//code that implements IntegerFunction goes here
//note that there is NO code that checks the type of n in rum time, because it is NOT needed anymore
}
private static void Main()
{
Console.WriteLine("{0}",IntegerFunction(0)); //compile error: there is no overloaded METHOD for objects of type "int" and no implicit conversion from any object, including "int", to "Integer" is known.
Console.WriteLine("{0}",IntegerFunction(new Integer(0))); //both compiles and no run time error
Console.WriteLine("{0}",IntegerFunction("string")); //compile error: there is no overloaded METHOD for objects of type "string" and no implicit conversion from any object, including "string", to "Integer" is known.
Console.WriteLine("{0}",IntegerFunction(new Integer("string"))); //compile error: there is no overloaded CONSTRUCTOR for objects of type "string"
}
}

注意,为了在你的代码中使用动态,你必须添加引用微软。CSharp

如果. net框架的版本低于/低于/小于4.0,并且动态在该版本中未定义,那么你将不得不使用对象来代替,并将其转换为整数类型,这很麻烦,所以我建议你至少使用。net 4.0或更新版本,如果可以的话,这样你就可以使用动态来代替对象

如果你只想使用一种数字类型,你可以考虑用using在c++中创建类似于别名的东西。

因此,我们不再使用非常通用的

T ComputeSomething<T>(T value1, T value2) where T : INumeric { ... }

你可以

using MyNumType = System.Double;
T ComputeSomething<MyNumType>(MyNumType value1, MyNumType value2) { ... }

这可能允许你在需要时轻松地从double转换到int或其他,但你不能在同一个程序中使用ComputeSomethingdoubleint

但是为什么不把所有的double替换为int呢?因为你的方法可能想要使用double,不管输入是double还是int。别名允许你确切地知道哪个变量使用了动态类型。

我有一个类似的情况,我需要处理数字类型和字符串;看起来有点奇怪,但就是这样。

和许多人一样,我研究了约束条件,提出了一堆它必须支持的接口。然而,第一,它并不是100%无懈可击的;第二,任何新看到这一长串约束条件的人都会立刻感到困惑。

所以,我的方法是把我所有的逻辑放到一个没有约束的泛型方法中,但是让这个泛型方法是私有的。然后我用公共方法公开它,其中一个方法显式地处理我想处理的类型——在我看来,代码是干净而显式的,例如。

public static string DoSomething(this int input, ...) => DoSomethingHelper(input, ...);
public static string DoSomething(this decimal input, ...) => DoSomethingHelper(input, ...);
public static string DoSomething(this double input, ...) => DoSomethingHelper(input, ...);
public static string DoSomething(this string input, ...) => DoSomethingHelper(input, ...);


private static string DoSomethingHelper<T>(this T input, ....)
{
// complex logic
}

不幸的是,. net并没有提供一种本地的方法。

为了解决这个问题,我创建了OSS库Genumerics,它为以下内置数字类型及其可空等等物提供了大多数标准数字操作,并能够添加对其他数字类型的支持。

sbytebyte short, ushortint uint, long, ulong, float, double byte0, byte1

其性能相当于特定于数值类型的解决方案,允许您创建高效的通用数值算法。

下面是一个代码使用示例。

public static T Sum(T[] items)
{
T sum = Number.Zero<T>();
foreach (T item in items)
{
sum = Number.Add(sum, item);
}
return sum;
}
public static T SumAlt(T[] items)
{
// implicit conversion to Number<T>
Number<T> sum = Number.Zero<T>();
foreach (T item in items)
{
// operator support
sum += item;
}
// implicit conversion to T
return sum;
}

从c# 7.3开始,可以使用更接近近似非托管的约束来指定类型形参是非指针、不可空的非托管类型。

class SomeGeneric<T> where T : unmanaged
{
//...
}

非托管约束意味着结构约束,并且不能与结构或new()约束组合。

如果是以下类型之一,则该类型为非托管类型:

  • Sbyte、byte、short、ushort、int、uint、long、ulong、char、float、double、decimal或bool
  • 任何enum类型
  • 任何指针类型
  • 任何只包含非托管类型字段的用户定义结构类型,在c# 7.3及更早版本中,都不是构造类型(至少包含一个类型参数的类型)。

为了进一步限制和消除没有实现IComparable的指针和用户定义类型,可以添加IComparable(但enum仍然派生自IComparable,因此通过添加IEquatable <T >,您可以根据您的情况进一步添加额外的接口。Unmanaged可以让这个列表更短):

    class SomeGeneric<T> where T : unmanaged, IComparable, IEquatable<T>
{
//...
}

但是这并没有阻止DateTime实例化。

话题老了,但对未来的读者来说:

这个特性与Discriminated Unions紧密相关,而Discriminated Unions到目前为止还没有在c#中实现。我发现它的问题在这里:

https://github.com/dotnet/csharplang/issues/113

此问题仍未解决,已计划为C# 10提供特性

所以我们仍然需要等待一段时间,但在释放之后,你可以这样做:

static bool IntegerFunction<T>(T value) where T : Int16 | Int32 | Int64 | ...

这个约束存在于。net 7中。

检查这个.NET博客文章实际的文档

从。net 7开始,你可以使用诸如INumberIFloatingPoint这样的接口来创建程序,例如:

using System.Numerics;


Console.WriteLine(Sum(1, 2, 3, 4, 5));
Console.WriteLine(Sum(10.541, 2.645));
Console.WriteLine(Sum(1.55f, 5, 9.41f, 7));


static T Sum<T>(params T[] numbers) where T : INumber<T>
{
T result = T.Zero;


foreach (T item in numbers)
{
result += item;
}


return result;
}

INumberSystem.Numerics命名空间中。

还有诸如IAdditionOperatorsIComparisonOperators这样的接口,因此你可以通用地使用特定的操作符。

所有实现了IComparable, IComparable<T>, IConvertible, IEquatable<T>, IFormattable的数值类型是结构体。然而,DateTime也是如此。

所以这个泛型扩展方法是可能的:

public static bool IsNumeric<T>(this T value) where T : struct, IComparable, IComparable<T>, IConvertible, IEquatable<T>, IFormattable =>
typeof(T) != typeof(DateTime);

但是对于实现这些接口的结构体,它将失败,例如:

public struct Foo : IComparable, IComparable<Foo>, IConvertible, IEquatable<Foo>, IFormattable { /* ... */ }

这个非泛型的替代方法性能较差,但保证可以工作:

public static bool IsNumeric(this Type type) =>
type == typeof(sbyte) || type == typeof(byte) ||
type == typeof(short) || type == typeof(ushort) ||
type == typeof(int) || type == typeof(uint) ||
type == typeof(long) || type == typeof(ulong) ||
type == typeof(float) ||
type == typeof(double) ||
type == typeof(decimal);

.NET 6有一个预览功能:

https://devblogs.microsoft.com/dotnet/preview-features-in-net-6-generic-math/#generic-math

下面是文章中的一个例子:

static T Add<T>(T left, T right)
where T : INumber<T>
{
return left + right;
}

INumber是一个实现其他接口的接口,比如IAdditionOperators,它允许通用的+用法。现在这是可能的,因为另一个预览特性是接口中的静态抽象,因为+操作符重载是一个静态方法:

/// <summary>Defines a mechanism for computing the sum of two values.</summary>
/// <typeparam name="TSelf">The type that implements this interface.</typeparam>
/// <typeparam name="TOther">The type that will be added to <typeparamref name="TSelf" />.</typeparam>
/// <typeparam name="TResult">The type that contains the sum of <typeparamref name="TSelf" /> and <typeparamref name="TOther" />.</typeparam>
[RequiresPreviewFeatures(Number.PreviewFeatureMessage, Url = Number.PreviewFeatureUrl)]
public interface IAdditionOperators<TSelf, TOther, TResult>
where TSelf : IAdditionOperators<TSelf, TOther, TResult>
{
/// <summary>Adds two values together to compute their sum.</summary>
/// <param name="left">The value to which <paramref name="right" /> is added.</param>
/// <param name="right">The value which is added to <paramref name="left" />.</param>
/// <returns>The sum of <paramref name="left" /> and <paramref name="right" />.</returns>
static abstract TResult operator +(TSelf left, TOther right);
}