DataFrame is a 2-dimensional labeled data structure with columns of potentially different types. You can think of it like a spreadsheet or SQL table, or a dict of Series objects.
And Series are:
Series is a one-dimensional labeled array capable of holding any data type (integers, strings, floating point numbers, Python objects, etc.).
Series have a name attribute which can be accessed like so:
In [27]: s = pd.Series(np.random.randn(5), name='something')
In [28]: s
Out[28]:
0 0.541
1 -1.175
2 0.129
3 0.043
4 -0.429
Name: something, dtype: float64
In [29]: s.name
Out[29]: 'something'
EDIT: Based on OP's comments, I think OP was looking for something like:
>>> df = pd.DataFrame(...)
>>> df.name = 'df' # making a custom attribute that DataFrame doesn't intrinsically have
>>> print(df.name)
'df'
In many situations, a custom attribute attached to a pd.DataFrame object is not necessary. In addition, note that pandas-object attributes may not serialize. So pickling will lose this data.
Instead, consider creating a dictionary with appropriately named keys and access the dataframe via dfs['some_label'].
I am working on a module for feature analysis and I had the same need as yours, as I would like to generate a report with the name of the pandas.Dataframe being analyzed. To solve this, I used the same solution presented by @scohe001 and @LeopardShark, originally in https://stackoverflow.com/a/18425523/8508275, implemented with the inspect library:
import inspect
def aux_retrieve_name(var):
callers_local_vars = inspect.currentframe().f_back.f_back.f_locals.items()
return [var_name for var_name, var_val in callers_local_vars if var_val is var]
Note the additional .f_back term since I intend to call it from another function: