如何在 for 循环中添加熊猫数据框中的行?

我有以下 for 循环:

for i in links:
data = urllib2.urlopen(str(i)).read()
data = json.loads(data)
data = pd.DataFrame(data.items())
data = data.transpose()
data.columns = data.iloc[0]
data = data.drop(data.index[[0]])

这样创建的每个数据框具有与其他数据框相同的大多数列,但并非所有数据框都具有相同的列。而且,它们都只有一行。我需要做的是将 for 循环生成的每个数据框中的所有不同列和每一行添加到数据框中

我尝试了熊猫串联或类似的,但似乎没有工作。任何想法? 谢谢。

386010 次浏览

Suppose your data looks like this:

import pandas as pd
import numpy as np


np.random.seed(2015)
df = pd.DataFrame([])
for i in range(5):
data = dict(zip(np.random.choice(10, replace=False, size=5),
np.random.randint(10, size=5)))
data = pd.DataFrame(data.items())
data = data.transpose()
data.columns = data.iloc[0]
data = data.drop(data.index[[0]])
df = df.append(data)
print('{}\n'.format(df))
# 0   0   1   2   3   4   5   6   7   8   9
# 1   6 NaN NaN   8   5 NaN NaN   7   0 NaN
# 1 NaN   9   6 NaN   2 NaN   1 NaN NaN   2
# 1 NaN   2   2   1   2 NaN   1 NaN NaN NaN
# 1   6 NaN   6 NaN   4   4   0 NaN NaN NaN
# 1 NaN   9 NaN   9 NaN   7   1   9 NaN NaN

Then it could be replaced with

np.random.seed(2015)
data = []
for i in range(5):
data.append(dict(zip(np.random.choice(10, replace=False, size=5),
np.random.randint(10, size=5))))
df = pd.DataFrame(data)
print(df)

In other words, do not form a new DataFrame for each row. Instead, collect all the data in a list of dicts, and then call df = pd.DataFrame(data) once at the end, outside the loop.

Each call to df.append requires allocating space for a new DataFrame with one extra row, copying all the data from the original DataFrame into the new DataFrame, and then copying data into the new row. All that allocation and copying makes calling df.append in a loop very inefficient. The time cost of copying grows quadratically with the number of rows. Not only is the call-DataFrame-once code easier to write, its performance will be much better -- the time cost of copying grows linearly with the number of rows.

There are 2 reasons you may append rows in a loop, 1. add to an existing df, and 2. create a new df.

to create a new df, I think its well documented that you should either create your data as a list and then create the data frame:

cols = ['c1', 'c2', 'c3']
lst = []
for a in range(2):
lst.append([1, 2, 3])
df1 = pd.DataFrame(lst, columns=cols)
df1
Out[3]:
c1  c2  c3
0   1   2   3
1   1   2   3

OR, Create the dataframe with an index and then add to it

cols = ['c1', 'c2', 'c3']
df2 = pd.DataFrame(columns=cols, index=range(2))
for a in range(2):
df2.loc[a].c1 = 4
df2.loc[a].c2 = 5
df2.loc[a].c3 = 6
df2
Out[4]:
c1 c2 c3
0  4  5  6
1  4  5  6

If you want to add to an existing dataframe, you could use either method above and then append the df's together (with or without the index):

df3 = df2.append(df1, ignore_index=True)
df3
Out[6]:
c1 c2 c3
0  4  5  6
1  4  5  6
2  1  2  3
3  1  2  3

Or, you can also create a list of dictionary entries and append those as in the answer above.

lst_dict = []
for a in range(2):
lst_dict.append({'c1':2, 'c2':2, 'c3': 3})
df4 = df1.append(lst_dict)
df4
Out[7]:
c1  c2  c3
0   1   2   3
1   1   2   3
0   2   2   3
1   2   2   3

Using the dict(zip(cols, vals)))

lst_dict = []
for a in range(2):
vals = [7, 8, 9]
lst_dict.append(dict(zip(cols, vals)))
df5 = df1.append(lst_dict)

Including the idea from the comment below:

It turns out Pandas does have an effective way to append to a dataframe:

df.loc( len(df) ) = [new, row, of, data]

(this) will "append" to the end of a dataframe in-place. – Demis Mar 22 at 15:32

I have created a data frame in a for loop with the help of a temporary empty data frame. Because for every iteration of for loop, a new data frame will be created thereby overwriting the contents of previous iteration.

Hence I need to move the contents of the data frame to the empty data frame that was created already. It's as simple as that. We just need to use .append function as shown below :

temp_df = pd.DataFrame() #Temporary empty dataframe
for sent in Sentences:
New_df = pd.DataFrame({'words': sent.words}) #Creates a new dataframe and contains tokenized words of input sentences
temp_df = temp_df.append(New_df, ignore_index=True) #Moving the contents of newly created dataframe to the temporary dataframe

Outside the for loop, you can copy the contents of the temporary data frame into the master data frame and then delete the temporary data frame if you don't need it

A more compact and efficient way would be perhaps:

cols = ['frame', 'count']
N = 4
dat = pd.DataFrame(columns = cols)
for i in range(N):


dat = dat.append({'frame': str(i), 'count':i},ignore_index=True)

output would be:

>>> dat
frame count
0     0     0
1     1     1
2     2     2
3     3     3

First, create a empty DataFrame with column names, after that, inside the for loop, you must define a dictionary (a row) with the data to append:

df = pd.DataFrame(columns=['A'])
for i in range(5):
df = df.append({'A': i}, ignore_index=True)
df
A
0  0
1  1
2  2
3  3
4  4

If you want to add a row with more columns, the code will looks like this:

df = pd.DataFrame(columns=['A','B','C'])
for i in range(5):
df = df.append({'A': i,
'B': i * 2,
'C': i * 3,
}
,ignore_index=True
)
df
A   B   C
0   0   0   0
1   1   2   3
2   2   4   6
3   3   6   9
4   4   8   12

Source