对于下列数据框架:
StationID HoursAhead BiasTemp
SS0279 0 10
SS0279 1 20
KEOPS 0 0
KEOPS 1 5
BB 0 5
BB 1 5
我想要这样的东西:
StationID BiasTemp
SS0279 15
KEOPS 2.5
BB 5
我知道我可以编写这样的脚本来获得预期的结果:
def transform_DF(old_df,col):
list_stations = list(set(old_df['StationID'].values.tolist()))
header = list(old_df.columns.values)
header.remove(col)
header_new = header
new_df = pandas.DataFrame(columns = header_new)
for i,station in enumerate(list_stations):
general_results = old_df[(old_df['StationID'] == station)].describe()
new_row = []
for column in header_new:
if column in ['StationID']:
new_row.append(station)
continue
new_row.append(general_results[column]['mean'])
new_df.loc[i] = new_row
return new_df
但是我想知道熊猫身上是否有更直接的东西。