其他答案更多地关注多线程与多重处理方面,但在python中必须考虑全局解释器锁(GIL)。当创建更多数量(比如k)的线程时,通常它们不会将性能提高 k 倍,因为它仍将作为单线程应用程序运行。GIL是一种全局锁,它锁定所有内容,只允许使用单个内核的单线程执行。 因此,当使用线程时,只有一个操作系统级别的线程,而python创建的伪线程完全由线程本身管理,但本质上是作为单个进程运行的。抢占发生在这些伪线程之间。如果CPU以最大容量运行,您可能希望切换到多重处理。 现在,在自包含执行实例的情况下,您可以选择池。但是在数据重叠的情况下,您可能希望进程通信,您应该使用multiprocessing.Process。
import concurrent.futuresimport urllib.request
URLS = ['http://www.foxnews.com/','http://www.cnn.com/','http://europe.wsj.com/','http://www.bbc.co.uk/','http://some-made-up-domain.com/']
# Retrieve a single page and report the URL and contentsdef load_url(url, timeout):with urllib.request.urlopen(url, timeout=timeout) as conn:return conn.read()
# We can use a with statement to ensure threads are cleaned up promptlywith concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:# Start the load operations and mark each future with its URLfuture_to_url = {executor.submit(load_url, url, 60): url for url in URLS}for future in concurrent.futures.as_completed(future_to_url):url = future_to_url[future]try:data = future.result()except Exception as exc:print('%r generated an exception: %s' % (url, exc))else:print('%r page is %d bytes' % (url, len(data)))
进程池执行人
import concurrent.futuresimport math
PRIMES = [112272535095293,112582705942171,112272535095293,115280095190773,115797848077099,1099726899285419]
def is_prime(n):if n % 2 == 0:return False
sqrt_n = int(math.floor(math.sqrt(n)))for i in range(3, sqrt_n + 1, 2):if n % i == 0:return Falsereturn True
def main():with concurrent.futures.ProcessPoolExecutor() as executor:for number, prime in zip(PRIMES, executor.map(is_prime, PRIMES)):print('%d is prime: %s' % (number, prime))
if __name__ == '__main__':main()