使用 ggplot2在分类 y 轴上绘图: “错误: 提供给连续比例的离散值”

下面的绘图代码给出了 Error: Discrete value supplied to continuous scale

这个代码有什么问题吗?它工作的很好,直到我试图改变规模,所以错误是存在的... 我试图找出解决方案,从类似的问题,但不能。

这是我数据的 head:

> dput(head(df))
structure(list(`10` = c(0, 0, 0, 0, 0, 0), `33.95` = c(0, 0,
0, 0, 0, 0), `58.66` = c(0, 0, 0, 0, 0, 0), `84.42` = c(0, 0,
0, 0, 0, 0), `110.21` = c(0, 0, 0, 0, 0, 0), `134.16` = c(0,
0, 0, 0, 0, 0), `164.69` = c(0, 0, 0, 0, 0, 0), `199.1` = c(0,
0, 0, 0, 0, 0), `234.35` = c(0, 0, 0, 0, 0, 0), `257.19` = c(0,
0, 0, 0, 0, 0), `361.84` = c(0, 0, 0, 0, 0, 0), `432.74` = c(0,
0, 0, 0, 0, 0), `506.34` = c(1, 0, 0, 0, 0, 0), `581.46` = c(0,
0, 0, 0, 0, 0), `651.71` = c(0, 0, 0, 0, 0, 0), `732.59` = c(0,
0, 0, 0, 0, 1), `817.56` = c(0, 0, 0, 1, 0, 0), `896.24` = c(0,
0, 0, 0, 0, 0), `971.77` = c(0, 1, 1, 1, 0, 1), `1038.91` = c(0,
0, 0, 0, 0, 0), MW = c(3.9, 6.4, 7.4, 8.1, 9, 9.4)), .Names = c("10",
"33.95", "58.66", "84.42", "110.21", "134.16", "164.69", "199.1",
"234.35", "257.19", "361.84", "432.74", "506.34", "581.46", "651.71",
"732.59", "817.56", "896.24", "971.77", "1038.91", "MW"), row.names = c("Merc",
"Peug", "Fera", "Fiat", "Opel", "Volv"
), class = "data.frame")

标绘代码:

## Plotting
meltDF = melt(df, id.vars = 'MW')
ggplot(meltDF[meltDF$value == 1,]) + geom_point(aes(x = MW, y = variable)) +
scale_x_continuous(limits=c(0, 1200), breaks=c(0, 400, 800, 1200)) +
scale_y_continuous(limits=c(0, 1200), breaks=c(0, 400, 800, 1200))

下面是增加比例之前的情节:

Plot

287212 次浏览

正如评论中提到的,有 不能是 factor型变量上的连续刻度。您可以像下面这样将 factor更改为 numeric,就在您定义 meltDF变量之后。

meltDF$variable=as.numeric(levels(meltDF$variable))[meltDF$variable]

然后,执行 ggplot命令

  ggplot(meltDF[meltDF$value == 1,]) + geom_point(aes(x = MW, y =   variable)) +
scale_x_continuous(limits=c(0, 1200), breaks=c(0, 400, 800, 1200)) +
scale_y_continuous(limits=c(0, 1200), breaks=c(0, 400, 800, 1200))

你会拿到你的病历的。

希望这个能帮上忙

如果 x是数字,那么添加 scale_x_continuous(); 如果 x是字符/因子,那么添加 scale_x_discrete()。这可能会解决您的问题。

在我的示例中,需要将该列(您认为该列是数字的,但实际上不是)转换为 numeric

geom_segment(data=tmpp,
aes(x=start_pos,
y=lib.complexity,
xend=end_pos,
yend=lib.complexity)
)
# to
geom_segment(data=tmpp,
aes(x=as.numeric(start_pos),
y=as.numeric(lib.complexity),
xend=as.numeric(end_pos),
yend=as.numeric(lib.complexity))
)