The results of this constructor can be somewhat unpredictable. One might assume that writing new BigDecimal(0.1) in Java creates a
BigDecimal which is exactly equal to 0.1 (an unscaled value of 1, with
a scale of 1), but it is actually equal to
0.1000000000000000055511151231257827021181583404541015625. This is because 0.1 cannot be represented exactly as a double (or, for that
matter, as a binary fraction of any finite length). Thus, the value
that is being passed in to the constructor is not exactly equal to
0.1, appearances notwithstanding.
The String constructor, on the other hand, is perfectly predictable: writing new BigDecimal("0.1") creates a BigDecimal which
is exactly equal to 0.1, as one would expect. Therefore, it is
generally recommended that the String constructor be used in
preference to this one.
When a double must be used as a source for a BigDecimal, note that this constructor provides an exact conversion; it does not give
the same result as converting the double to a String using the
Double.toString(double) method and then using the BigDecimal(String)
constructor. To get that result, use the static valueOf(double)
method.
You are storing 135.69 as String in currency. But instead of passing variable currency, you are again passing 135.69(double value) into new BigDecimal().
So you are seeing a lot of numbers in the output.
If you pass the currency variable, your output will be 135.69
import java.math.*;
public class Test {
public static void main(String[] args)
{
// Creating a Double Object
Double d = new Double("785.254");
/// Assigning the bigdecimal value of ln to b
BigDecimal b = BigDecimal.valueOf(d);
// Displaying BigDecimal value
System.out.println("The Converted BigDecimal value is: " + b);
}
}