Assuming you are on a linux, the following should work:
cat /dev/urandom | tr -cd 'a-f0-9' | head -c 32
This is only pseudo-random if your system runs low on entropy, but is (on linux) guaranteed to terminate. If you require genuinely random data, cat /dev/random instead of /dev/urandom. This change will make your code block until enough entropy is available to produce truly random output, so it might slow down your code. For most uses, the output of /dev/urandom is sufficiently random.
If you on OS X or another BSD, you need to modify it to the following:
In the following, "first" and "second" printf refers to the order in which they're executed rather than the order in which they appear in the line.
This technique uses brace expansion to produce a list of 32 random numbers mod 16 each followed by a space and one of the numbers in the range in braces followed by another space (e.g. 11 00). For each element of that list, the first printf strips off all but the first two characters using its format string (%.2) leaving either single digits followed by a space each or two digits. The space in the format string ensures that there is then at least one space between each output number.
The command substitution containing the first printf is not quoted so that word splitting is performed and each number goes to the second printf as a separate argument. There, the numbers are converted to hex by the %X format string and they are appended to each other without spaces (since there aren't any in the format string) and the result is stored in the variable named string.
When printf receives more arguments than its format string accounts for, the format is applied to each argument in turn until they are all consumed. If there are fewer arguments, the unmatched format string (portion) is ignored, but that doesn't apply in this case.
I tested it in Bash 3.2, 4.4 and 5.0-alpha. But it doesn't work in zsh (5.2) or ksh (93u+) because RANDOM only gets evaluated once in the brace expansion in those shells.
Note that because of using the mod operator on a value that ranges from 0 to 32767 the distribution of digits using the snippets could be skewed (not to mention the fact that the numbers are pseudo random in the first place). However, since we're using mod 16 and 32768 is divisible by 16, that won't be a problem here.
In any case, the correct way to do this is using mktemp as in Oleg Razgulyaev's answer.
This answer is very similar to fmarks, so I cannot really take credit for it, but I found the cat and tr command combinations quite slow, and I found this version quite a bit faster. You need hexdump.
Hope to add a (maybe) better solution to this topic.
Notice: this only works with bash4 and some implement of mktemp(for example, the GNU one)
Try this
fn=$(mktemp -u -t 'XXXXXX')
echo ${fn/\/tmp\//}
This one is twice as faster as head /dev/urandom | tr -cd 'a-f0-9' | head -c 32, and eight times as faster as cat /dev/urandom | tr -cd 'a-f0-9' | head -c 32.
Benchmark:
With mktemp:
#!/bin/bash
# a.sh
for (( i = 0; i < 1000; i++ ))
do
fn=$(mktemp -u -t 'XXXXXX')
echo ${fn/\/tmp\//} > /dev/null
done
time ./a.sh
./a.sh 0.36s user 1.97s system 99% cpu 2.333 total
And the other:
#!/bin/bash
# b.sh
for (( i = 0; i < 1000; i++ ))
do
cat /dev/urandom | tr -dc 'a-zA-Z0-9' | head -c 32 > /dev/null
done
time ./b.sh
./b.sh 0.52s user 20.61s system 113% cpu 18.653 total
If you have openssl in your system you can use it for generating random hex (also it can be -base64) strings with defined length. I found it pretty simple and usable in cron in one line jobs.
uuidgen generates exactly this, except you have to remove hyphens. So I found this to be the most elegant (at least to me) way of achieving this. It should work on linux and OS X out of the box.