熊猫分组,然后按组排序

我想按两列对数据帧进行分组,然后在这些组中对聚合的结果进行排序。

In [167]: df


Out[167]:
count     job source
0      2   sales      A
1      4   sales      B
2      6   sales      C
3      3   sales      D
4      7   sales      E
5      5  market      A
6      3  market      B
7      2  market      C
8      4  market      D
9      1  market      E




In [168]: df.groupby(['job','source']).agg({'count':sum})


Out[168]:
count
job    source
market A           5
B           3
C           2
D           4
E           1
sales  A           2
B           4
C           6
D           3
E           7

我现在想在每个组中按降序对“count”列排序,然后只取前三行。得到类似这样的东西:

                count
job     source
market  A           5
D           4
B           3
sales   E           7
C           6
B           4
590582 次浏览

您要做的实际上又是一个groupby(基于第一个groupby的结果):对每个组的前三个元素进行排序并取它们。

从第一组by的结果开始:

In [60]: df_agg = df.groupby(['job','source']).agg({'count':sum})

我们根据指数的第一级进行分组:

In [63]: g = df_agg['count'].groupby('job', group_keys=False)

然后我们想要排序('order')每个组,并取前三个元素:

In [64]: res = g.apply(lambda x: x.sort_values(ascending=False).head(3))

然而,有一个快捷函数可以做到这一点,nlargest:

In [65]: g.nlargest(3)
Out[65]:
job     source
market  A         5
D         4
B         3
sales   E         7
C         6
B         4
dtype: int64

这样一来,它看起来就像:

df_agg['count'].groupby('job', group_keys=False).nlargest(3)

你也可以一次性完成,先排序,然后用头取每组的前3个。

In[34]: df.sort_values(['job','count'],ascending=False).groupby('job').head(3)


Out[35]:
count     job source
4      7   sales      E
2      6   sales      C
1      4   sales      B
5      5  market      A
8      4  market      D
6      3  market      B

这是另一个排序前3的例子,并在组内排序:

In [43]: import pandas as pd


In [44]:  df = pd.DataFrame({"name":["Foo", "Foo", "Baar", "Foo", "Baar", "Foo", "Baar", "Baar"], "count_1":[5,10,12,15,20,25,30,35], "count_2" :[100,150,100,25,250,300,400,500]})


In [45]: df
Out[45]:
count_1  count_2  name
0        5      100   Foo
1       10      150   Foo
2       12      100  Baar
3       15       25   Foo
4       20      250  Baar
5       25      300   Foo
6       30      400  Baar
7       35      500  Baar




### Top 3 on sorted order:
In [46]: df.groupby(["name"])["count_1"].nlargest(3)
Out[46]:
name
Baar  7    35
6    30
4    20
Foo   5    25
3    15
1    10
dtype: int64




### Sorting within groups based on column "count_1":
In [48]: df.groupby(["name"]).apply(lambda x: x.sort_values(["count_1"], ascending = False)).reset_index(drop=True)
Out[48]:
count_1  count_2  name
0       35      500  Baar
1       30      400  Baar
2       20      250  Baar
3       12      100  Baar
4       25      300   Foo
5       15       25   Foo
6       10      150   Foo
7        5      100   Foo

如果你不需要对一个列求和,那么使用@tvashtar的答案。如果你确实需要求和,那么你可以使用@joris的答案或这个非常相似的答案。

df.groupby(['job']).apply(lambda x: (x.groupby('source')
.sum()
.sort_values('count', ascending=False))
.head(3))

试试这个,这是一个简单的方法来做groupby和降序排序:

df.groupby(['companyName'])['overallRating'].sum().sort_values(ascending=False).head(20)

你可以用一行写出来

df.groupby(['job']).apply(lambda x: x.sort_values(['count'], ascending=False).head(3)
.drop('job', axis=1))

apply()所做的是,它接受groupby的每一组并将其赋值给lambda函数中的x。

我没有使用“by”就得到了这个错误:

类型错误:sort_values()缺少一个必需的位置参数:'by'

所以,我把它改成这样,现在它工作了:

df.groupby(['job','source']).agg({'count':sum}).sort_values(by='count',ascending=False).head(20)


@joris的回答帮助很大。

df.groupby(['job'])['count'].nlargest(3)

当分组数据帧包含多个分组列("multi-index"),使用其他方法擦除其他列:

edf = pd.DataFrame({"job":["sales", "sales", "sales", "sales", "sales",
"market", "market", "market", "market", "market"],
"source":["A", "B", "C", "D", "E", "A", "B", "C", "D", "E"],
"count":[2, 4,6,3,7,5,3,2,4,1],
"other_col":[1,2,3,4,56,6,3,4,6,11]})


gdf = edf.groupby(["job", "source"]).agg({"count":sum, "other_col":np.mean})
gdf.groupby(level=0, group_keys=False).apply(lambda g:g.sort_values("count", ascending=False))

这将保持other_col以及在每个组中按count列排序