将NaN替换为空字符串

我有一个熊猫数据框架如下所示:

    1    2       3
0  a  NaN    read
1  b    l  unread
2  c  NaN    read

我想用空字符串删除NaN值,使其看起来像这样:

    1    2       3
0  a   ""    read
1  b    l  unread
2  c   ""    read
564345 次浏览
import numpy as np
df1 = df.replace(np.nan, '', regex=True)

这可能会有所帮助。它将用一个空字符串替换所有的nan。

df = df.fillna('')

这将用''填充na(例如NaN)。

inplace是可能的,但应该避免使用它将被弃用:

df.fillna('', inplace=True)

只填写一列:

df.column1 = df.column1.fillna('')

可以使用df['column1']代替df.column1

如果你正在从一个文件(比如CSV或Excel)读取数据帧,那么使用:

df.read_csv(path , na_filter=False)
df.read_excel(path , na_filter=False)

这将自动将空字段视为空字符串''


如果你已经有了数据框架

df = df.replace(np.nan, '', regex=True)
df = df.fillna('')
如果你正在将DataFrame转换为JSON, NaN将会给出错误,所以在这个用例中最好的解决方案是用None替换NaN 如下所示:

df1 = df.where((pd.notnull(df)), None)

使用格式化程序,如果你只是想格式化它,以便它在打印时很好地呈现。只需使用df.to_string(... formatters来定义自定义字符串格式,而无需修改DataFrame或浪费内存:

df = pd.DataFrame({
'A': ['a', 'b', 'c'],
'B': [np.nan, 1, np.nan],
'C': ['read', 'unread', 'read']})
print df.to_string(
formatters={'B': lambda x: '' if pd.isnull(x) else '{:.0f}'.format(x)})

得到:

   A B       C
0  a      read
1  b 1  unread
2  c      read

使用keep_default_na=False可以帮助你:

df = pd.read_csv(filename, keep_default_na=False)

我用nan尝试了一列字符串值。

删除nan并填充空字符串:

df.columnname.replace(np.nan,'',regex = True)

删除nan并填充一些值:

df.columnname.replace(np.nan,'value',regex = True)

我试了df。iloc也。但它需要列的下标。所以你需要再看一下表格。简单地说,上述方法减少了一步。

试试这个,

添加inplace=True

import numpy as np
df.replace(np.NaN, '', inplace=True)