Conditional - Conditional execution of instructions. With the "conditional" clause, you can conditionally execute one of several instructions based on the current state (which can be set with a previous instruction).
Proper Iteration: Now with the conditional clause, we can escape the infinite loop of the jump back instruction. We have now a conditional loop and then proper Iteration
1. mov 1000 m[30]
2. sub m[30] 1
3. (if not-zero) jump 2 // jump only if the previous
// sub instruction did not result in 0
// this loop will be repeated 1000 times
// here we have proper ***iteration***, a conditional loop.
Naming: giving names to a specific memory location holding data or holding a step. This is just a "convenience" to have. We do not add any new instructions by having the capacity to define “names” for memory locations. “Naming” is not a instruction for the agent, it’s just a convenience to us. Naming makes code (at this point) easier to read and easier to change.
#define counter m[30] // name a memory location
mov 1000 counter
loop: // name a instruction pointer location
sub counter 1
(if not-zero) jmp-to loop
One-level subroutine: Suppose there’s a series of steps you need to execute frequently. You can store the steps in a named position in memory and then jump to that position when you need to execute them (call). At the end of the sequence you'll need to return to the point of calling to continue execution. With this mechanism, you’re creating new instructions (subroutines) by composing core instructions.
Implementation: (no new concepts required)
Store the current Instruction Pointer in a predefined memory position
jump to the subroutine
at the end of the subroutine, you retrieve the Instruction Pointer from the predefined memory location, effectively jumping back to the following instruction of the original call
Problem with the one-level implementation: You cannot call another subroutine from a subroutine. If you do, you'll overwrite the returning address (global variable), so you cannot nest calls.
To have a better Implementation for subroutines: You need a STACK
Stack: You define a memory space to work as a "stack", you can “push” values on the stack, and also “pop” the last “pushed” value. To implement a stack you'll need a Stack Pointer (similar to the Instruction Pointer) which points to the actual “head” of the stack. When you “push” a value, the stack pointer decrements and you store the value. When you “pop”, you get the value at the actual Stack Pointer and then the Stack Pointer is incremented.
Subroutines Now that we have a stack we can implement proper subroutines allowing nested calls. The implementation is similar, but instead of storing the Instruction Pointer in a predefined memory position, we "push" the value of the IP in the stack. At the end of the subroutine, we just “pop” the value from the stack, effectively jumping back to the instruction after the original call. This implementation, having a “stack” allows calling a subroutine from another subroutine. With this implementation we can create several levels of abstraction when defining new instructions as subroutines, by using core instructions or other subroutines as building blocks.
Recursion: What happens when a subroutine calls itself?. This is called "recursion".
Problem: Overwriting the local intermediate results a subroutine can be storing in memory. Since you are calling/reusing the same steps, if the intermediate result are stored in predefined memory locations (global variables) they will be overwritten on the nested calls.
Solution: To allow recursion, subroutines should store local intermediate results in the stack, therefore, on each recursive call (direct or indirect) the intermediate results are stored in different memory locations.
...
having reached recursion we stop here.
Conclusion:
In a Von Neumann Architecture, clearly "Iteration" is a simpler/basic concept than “Recursion". We have a form of "Iteration" at level 7, while "Recursion" is at level 14 of the concepts hierarchy.
Iteration will always be faster in machine code because it implies less instructions therefore less CPU cycles.
Which one is "better"?
You should use "iteration" when you are processing simple, sequential data structures, and everywhere a “simple loop” will do.
You should use "recursion" when you need to process a recursive data structure (I like to call them “Fractal Data Structures”), or when the recursive solution is clearly more “elegant”.
Advice: use the best tool for the job, but understand the inner workings of each tool in order to choose wisely.
Finally, note that you have plenty of opportunities to use recursion. You have Recursive Data Structures everywhere, you’re looking at one now: parts of the DOM supporting what you are reading are a RDS, a JSON expression is a RDS, the hierarchical file system in your computer is a RDS, i.e: you have a root directory, containing files and directories, every directory containing files and directories, every one of those directories containing files and directories...