# 8D array
In [354]: R = np.random.standard_normal((3,5,4,6,8,2,7,9))
# marginalize out axis 5 (i.e. "n" here)
In [363]: esum = np.einsum("ijklmnop -> n", R)
# marginalize out axis 5 (i.e. sum over rest of the axes)
In [364]: nsum = np.sum(R, axis=(0,1,2,3,4,6,7))
In [365]: np.allclose(esum, nsum)
Out[365]: True
In [772]: A
Out[772]:
array([[1, 2, 3],
[4, 2, 2],
[2, 3, 4]])
In [773]: B
Out[773]:
array([[1, 4, 7],
[2, 5, 8],
[3, 6, 9]])
In [774]: np.einsum("ij, ij -> ", A, B)
Out[774]: 124
16) 2D和3D数组乘法
这样的乘法在求解线性方程组(Ax = b)时非常有用,你想要验证结果。
# inputs
In [115]: A = np.random.rand(3,3)
In [116]: b = np.random.rand(3, 4, 5)
# solve for x
In [117]: x = np.linalg.solve(A, b.reshape(b.shape[0], -1)).reshape(b.shape)
# 2D and 3D array multiplication :)
In [118]: Ax = np.einsum('ij, jkl', A, x)
# indeed the same!
In [119]: np.allclose(Ax, b)
Out[119]: True
# reshape 3D array `x` to 2D, perform matmul
# then reshape the resultant array to 3D
In [123]: Ax_matmul = np.matmul(A, x.reshape(x.shape[0], -1)).reshape(x.shape)
# indeed correct!
In [124]: np.allclose(Ax, Ax_matmul)
Out[124]: True
for b in range(...):
for i in range(...):
for j in range(...):
# the variables b, i and j index C in the order of their appearance in the equation
C[b, i, j] = ...
for b in range(...):
for i in range(...):
for j in range(...):
C[b, i, j] = 0
for h in range(...):
for w in range(...):
...
在最里面的循环中,我们现在已经定义了所有的索引,所以我们可以写出实际的和
翻译完成:
# three nested for-loops that index the elements of C
for b in range(...):
for i in range(...):
for j in range(...):
# prepare to sum
C[b, i, j] = 0
# two nested for-loops for the two indexes that don't appear on the right-hand side
for h in range(...):
for w in range(...):
# Sum! Compare the statement below with the original einsum formula
# 'bhwi,bhwj->bij'
C[b, i, j] += A[b, h, w, i] * B[b, h, w, j]
# C's shape is determined by the shapes of the inputs
# b indexes both A and B, so its range can come from either A.shape or B.shape
# i indexes only A, so its range can only come from A.shape, the same is true for j and B
assert A.shape[0] == B.shape[0]
assert A.shape[1] == B.shape[1]
assert A.shape[2] == B.shape[2]
C = np.zeros((A.shape[0], A.shape[3], B.shape[3]))
for b in range(A.shape[0]): # b indexes both A and B, or B.shape[0], which must be the same
for i in range(A.shape[3]):
for j in range(B.shape[3]):
# h and w can come from either A or B
for h in range(A.shape[1]):
for w in range(A.shape[2]):
C[b, i, j] += A[b, h, w, i] * B[b, h, w, j]
Z = np.zeros((B.shape[1], A.shape[0]))
for i in range(A.shape[0]):
for j in range(A.shape[1]):
for k range(B.shape[0]):
Z[k, i] += A[i, j]*B[j, k] # ki <- ij*jk
>>> for indices in domain:
... vals = {k: v for v, k in zip(indices, to_key)}
... res_ind = tuple(zip([vals[key] for key in res_expr]))
... inputs_ind = [tuple(zip([vals[key] for key in expr]))
... for expr in inputs_expr]
...
... res[res_ind] += reduce_mult([M[i] for M, i in zip(inputs, inputs_ind)])
# --------------------------------------------------------------------------------
# For np.einsum("ij,kl", a, b)
# 1-1: Term "ij" or (i,j), two free indices, selects selects an element a[i][j].
# 1-2: Term "kl" or (k,l), two free indices, selects selects an element b[k][l].
# 2: Each a[i][j] is applied on b[k][l] for element-wise multiplication a[i][j] * b[k,l]
# --------------------------------------------------------------------------------
# for (i,j) in a:
# for(k,l) in b:
# a[i][j] * b[k][l]
np.einsum("ij,kl", a, b)
array([[[[ 0, 0],
[ 0, 0]],
[[10, 11],
[12, 13]],
[[20, 22],
[24, 26]]],
[[[30, 33],
[36, 39]],
[[40, 44],
[48, 52]],
[[50, 55],
[60, 65]]]])
例子
矩阵A行和矩阵B列的点积
A = np.matrix('0 1 2; 3 4 5')
B = np.matrix('0 -3; -1 -4; -2 -5');
np.einsum('ij,ji->i', A, B)
# Same with
np.diagonal(np.matmul(A,B))
(A*B).diagonal()
---
[ -5 -50]
[ -5 -50]
[[ -5 -50]]