如何在给定的平面图上绘制垂直线

给定一个信号的时间表示图,我如何画出相应的时间索引线?

具体来说,给定一个时间索引范围为0到2.6(秒)的信号图,我想绘制垂直红线,指示列表[0.22058956, 0.33088437, 2.20589566]对应的时间索引。我该怎么做呢?

755256 次浏览

添加覆盖整个绘图窗口的垂直线的标准方法是plt.axvline,而无需指定它们的实际高度

import matplotlib.pyplot as plt


plt.axvline(x=0.22058956)
plt.axvline(x=0.33088437)
plt.axvline(x=2.20589566)

xcoords = [0.22058956, 0.33088437, 2.20589566]
for xc in xcoords:
plt.axvline(x=xc)

您可以使用许多可用于其他绘图命令的关键字(例如colorlinestylelinewidth…)。你可以在坐标轴坐标中传递关键字参数yminymax(例如ymin=0.25ymax=0.75将覆盖图的中间部分)。水平线(axhline)和矩形(axvspan)有相应的函数。

对于多行

xposition = [0.3, 0.4, 0.45]
for xc in xposition:
plt.axvline(x=xc, color='k', linestyle='--')

正如其他人建议的那样,在循环中调用axvline是可行的,但它可能不方便,因为

  1. 每一行都是一个单独的plot对象,当你有很多行时,这会导致事情非常缓慢。
  2. 当您创建图例时,每一行都有一个新的条目,这可能不是您想要的。

相反,你可以使用以下方便的函数来创建所有的线作为一个单一的绘图对象:

import matplotlib.pyplot as plt
import numpy as np




def axhlines(ys, ax=None, lims=None, **plot_kwargs):
"""
Draw horizontal lines across plot
:param ys: A scalar, list, or 1D array of vertical offsets
:param ax: The axis (or none to use gca)
:param lims: Optionally the (xmin, xmax) of the lines
:param plot_kwargs: Keyword arguments to be passed to plot
:return: The plot object corresponding to the lines.
"""
if ax is None:
ax = plt.gca()
ys = np.array((ys, ) if np.isscalar(ys) else ys, copy=False)
if lims is None:
lims = ax.get_xlim()
y_points = np.repeat(ys[:, None], repeats=3, axis=1).flatten()
x_points = np.repeat(np.array(lims + (np.nan, ))[None, :], repeats=len(ys), axis=0).flatten()
plot = ax.plot(x_points, y_points, scalex = False, **plot_kwargs)
return plot




def axvlines(xs, ax=None, lims=None, **plot_kwargs):
"""
Draw vertical lines on plot
:param xs: A scalar, list, or 1D array of horizontal offsets
:param ax: The axis (or none to use gca)
:param lims: Optionally the (ymin, ymax) of the lines
:param plot_kwargs: Keyword arguments to be passed to plot
:return: The plot object corresponding to the lines.
"""
if ax is None:
ax = plt.gca()
xs = np.array((xs, ) if np.isscalar(xs) else xs, copy=False)
if lims is None:
lims = ax.get_ylim()
x_points = np.repeat(xs[:, None], repeats=3, axis=1).flatten()
y_points = np.repeat(np.array(lims + (np.nan, ))[None, :], repeats=len(xs), axis=0).flatten()
plot = ax.plot(x_points, y_points, scaley = False, **plot_kwargs)
return plot

要在一些垂直线上添加legend和/或colors,可以使用以下命令:

import matplotlib.pyplot as plt


# x coordinates for the lines
xcoords = [0.1, 0.3, 0.5]
# colors for the lines
colors = ['r','k','b']


for xc,c in zip(xcoords,colors):
plt.axvline(x=xc, label='line at x = {}'.format(xc), c=c)


plt.legend()
plt.show()

结果

My amazing plot seralouk

除了上面的答案中提供的plt.axvlineplt.plot((x1, x2), (y1, y2)) plt.plot([x1, x2], [y1, y2]),还可以使用

plt.vlines(x_pos, ymin=y1, ymax=y2)

x_pos处绘制一条从y1y2的垂直线,其中y1y2的值为绝对数据坐标。

matplotlib.pyplot.vlines vs. matplotlib.pyplot.axvline

  • 这些方法适用于用seaborn和pandas.DataFrame.plot生成的图,它们都使用matplotlib
  • 区别在于vlines接受x的一个或多个位置,而axvline允许一个位置。
    • 单个位置:x=37
    • 多个位置:x=[37, 38, 39]
  • vlinesyminymax作为y轴上的位置,而axvlineyminymax作为y轴范围的百分比。
    • 当将多行传递给vlines时,将list传递给yminymax
  • 还有matplotlib.axes.Axes.vlinesmatplotlib.axes.Axes.axvline用于面向对象的API。
    • 如果你用类似fig, ax = plt.subplots()的东西绘制图形,那么分别用ax.vlinesax.axvline替换plt.vlinesplt.axvline
  • 请参阅回答中包含.hlines的水平线。
import numpy as np
import matplotlib.pyplot as plt


xs = np.linspace(1, 21, 200)


plt.figure(figsize=(10, 7))


# only one line may be specified; full height
plt.axvline(x=36, color='b', label='axvline - full height')


# only one line may be specified; ymin & ymax specified as a percentage of y-range
plt.axvline(x=36.25, ymin=0.05, ymax=0.95, color='b', label='axvline - % of full height')


# multiple lines all full height
plt.vlines(x=[37, 37.25, 37.5], ymin=0, ymax=len(xs), colors='purple', ls='--', lw=2, label='vline_multiple - full height')


# multiple lines with varying ymin and ymax
plt.vlines(x=[38, 38.25, 38.5], ymin=[0, 25, 75], ymax=[200, 175, 150], colors='teal', ls='--', lw=2, label='vline_multiple - partial height')


# single vline with full ymin and ymax
plt.vlines(x=39, ymin=0, ymax=len(xs), colors='green', ls=':', lw=2, label='vline_single - full height')


# single vline with specific ymin and ymax
plt.vlines(x=39.25, ymin=25, ymax=150, colors='green', ls=':', lw=2, label='vline_single - partial height')


# place the legend outside
plt.legend(bbox_to_anchor=(1.0, 1), loc='upper left')


plt.show()

Enter image description here

海博恩斧级地块

import seaborn as sns


# sample data
fmri = sns.load_dataset("fmri")


# x index for max y values for stim and cue
c_max, s_max = fmri.pivot_table(index='timepoint', columns='event', values='signal', aggfunc='mean').idxmax()


# plot
g = sns.lineplot(data=fmri, x="timepoint", y="signal", hue="event")


# y min and max
ymin, ymax = g.get_ylim()


# vertical lines
g.vlines(x=[c_max, s_max], ymin=ymin, ymax=ymax, colors=['tab:orange', 'tab:blue'], ls='--', lw=2)

Enter image description here

Seaborn数字级图

  • 必须遍历每个轴。
import seaborn as sns


# sample data
fmri = sns.load_dataset("fmri")


# used to get the index values (x) for max y for each event in each region
fpt = fmri.pivot_table(index=['region', 'timepoint'], columns='event', values='signal', aggfunc='mean')


# plot
g = sns.relplot(data=fmri, x="timepoint", y="signal", col="region", hue="event", kind="line")


# iterate through the axes
for ax in g.axes.flat:
# get y min and max
ymin, ymax = ax.get_ylim()
# extract the region from the title for use in selecting the index of fpt
region = ax.get_title().split(' = ')[1]
# get x values for max event
c_max, s_max = fpt.loc[region].idxmax()
# add vertical lines
ax.vlines(x=[c_max, s_max], ymin=ymin, ymax=ymax, colors=['tab:orange', 'tab:blue'], ls='--', lw=2, alpha=0.5)
  • 对于'region = frontal',两个事件的最大值发生在5

enter image description here

Barplot和histogram

    注意,条形图标记位置有从零开始的索引,无论轴标记标签如何,因此根据条形索引而不是标记标签选择x
    • ax.get_xticklabels()将显示位置和标签。
import pandas as pd
import seaborn as sns


# load data
tips = sns.load_dataset('tips')


# histogram
ax = tips.plot(kind='hist', y='total_bill', bins=30, ec='k', title='Histogram with Vertical Line')
_ = ax.vlines(x=16.5, ymin=0, ymax=30, colors='r')


# barplot
ax = tips.loc[5:25, ['total_bill', 'tip']].plot(kind='bar', figsize=(15, 4), title='Barplot with Vertical Lines', rot=0)
_ = ax.vlines(x=[0, 17], ymin=0, ymax=45, colors='r')

Enter image description here

Enter image description here

时间序列轴

import pandas_datareader as web  # conda or pip install this; not part of pandas
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime


# get test data; this data is downloaded with the Date column in the index as a datetime dtype
df = web.DataReader('^gspc', data_source='yahoo', start='2020-09-01', end='2020-09-28').iloc[:, :2]


# display(df.head(2))
High          Low
Date
2020-09-01  3528.030029  3494.600098
2020-09-02  3588.110107  3535.229980


# plot dataframe; the index is a datetime index
ax = df.plot(figsize=(9, 6), title='S&P 500', ylabel='Price')


# add vertical lines
ax.vlines(x=[datetime(2020, 9, 2), '2020-09-24'], ymin=3200, ymax=3600, color='r', label='test lines')


ax.legend(bbox_to_anchor=(1, 1), loc='upper left')
plt.show()

Enter image description here