It's not in the standard library but you can extend the Integer class.
class Integer
def factorial_recursive
self <= 1 ? 1 : self * (self - 1).factorial
end
def factorial_iterative
f = 1; for i in 1..self; f *= i; end; f
end
alias :factorial :factorial_iterative
end
N.B. Iterative factorial is a better choice for obvious performance reasons.
class Integer
def fact
(1..self).reduce(:*) || 1
end
end
>> 400.fact
=> 64034522846623895262347970319503005850702583026002959458684445942802397169186831436278478647463264676294350575035856810848298162883517435228961988646802997937341654150838162426461942352307046244325015114448670890662773914918117331955996440709549671345290477020322434911210797593280795101545372667251627877890009349763765710326350331533965349868386831339352024373788157786791506311858702618270169819740062983025308591298346162272304558339520759611505302236086810433297255194852674432232438669948422404232599805551610635942376961399231917134063858996537970147827206606320217379472010321356624613809077942304597360699567595836096158715129913822286578579549361617654480453222007825818400848436415591229454275384803558374518022675900061399560145595206127211192918105032491008000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
This implementation also happens to be the fastest among the variants listed in Rosetta Code.
update #1
Added || 1 to handle the zero case.
update #2
With thanks and appreciation to Mark Thomas, here's a version that is a bit more efficient, elegant and obscure:
class Integer
def fact
(2..self).reduce(1,:*)
end
end
class Integer
def factorial
return self < 0 ? false : self==0 ? 1 : self.downto(1).inject(:*)
#Not sure what other libraries say, but my understanding is that factorial of
#anything less than 0 does not exist.
end
end
Using Math.gamma.floor is an easy way to produce an approximation and then round it back down to the correct integer result. Should work for all Integers, include an input check if necessary.
Just another way to do it, although it really isn't necessary.
class Factorial
attr_reader :num
def initialize(num)
@num = num
end
def find_factorial
(1..num).inject(:*) || 1
end
end
number = Factorial.new(8).find_factorial
puts number
def factorial(number)
number = number.to_i
number_range = (number).downto(1).to_a
factorial = number_range.inject(:*)
puts "The factorial of #{number} is #{factorial}"
end
factorial(#number)
You will probably find a Ruby feature request useful. It contains a nontrivial patch that includes a demo Bash script. The speed difference between a naive loop and the solution presented in the batch can be literally 100x (hundred fold). Written all in pure Ruby.
In Ruby standard library function for factorial is not available. We can make a simple function of factorial in ruby in this way.
def factorial_number(n)
if n <= 1
1
else
n * factorial_number(n-1)
end
end
puts factorial_number(6) #Output is 720 => (6*5*4*3*2*1)
puts factorial_number(8) #Output is 40320 => (8*7*6*5*4*3*2*1)