GridSpec with shared axes in Python

This solution to another thread suggests using gridspec.GridSpec instead of plt.subplots. However, when I share axes between subplots, I usually use a syntax like the following

  fig, axes = plt.subplots(N, 1, sharex='col', sharey=True, figsize=(3,18))

How can I specify sharex and sharey when I use GridSpec ?

57686 次浏览

First off, there's an easier workaround for your original problem, as long as you're okay with being slightly imprecise. Just reset the top extent of the subplots to the default after calling tight_layout:

fig, axes = plt.subplots(ncols=2, sharey=True)
plt.setp(axes, title='Test')
fig.suptitle('An overall title', size=20)


fig.tight_layout()
fig.subplots_adjust(top=0.9)


plt.show()

enter image description here


However, to answer your question, you'll need to create the subplots at a slightly lower level to use gridspec. If you want to replicate the hiding of shared axes like subplots does, you'll need to do that manually, by using the sharey argument to Figure.add_subplot and hiding the duplicated ticks with plt.setp(ax.get_yticklabels(), visible=False).

As an example:

import matplotlib.pyplot as plt
from matplotlib import gridspec


fig = plt.figure()
gs = gridspec.GridSpec(1,2)
ax1 = fig.add_subplot(gs[0])
ax2 = fig.add_subplot(gs[1], sharey=ax1)
plt.setp(ax2.get_yticklabels(), visible=False)


plt.setp([ax1, ax2], title='Test')
fig.suptitle('An overall title', size=20)
gs.tight_layout(fig, rect=[0, 0, 1, 0.97])


plt.show()

enter image description here

Both Joe's choices gave me some problems: the former, related with direct use of figure.tight_layout instead of figure.set_tight_layout() and, the latter, with some backends (UserWarning: tight_layout : falling back to Agg renderer). But Joe's answer definitely cleared my way toward another compact alternative. This is the result for a problem close to the OP's one:

import matplotlib.pyplot as plt


fig, axes = plt.subplots(nrows=2, ncols=1, sharex='col', sharey=True,
gridspec_kw={'height_ratios': [2, 1]},
figsize=(4, 7))
fig.set_tight_layout({'rect': [0, 0, 1, 0.95], 'pad': 1.5, 'h_pad': 1.5})
plt.setp(axes, title='Test')
fig.suptitle('An overall title', size=20)


plt.show()

enter image description here

I made a function where you input a list or array of axes and it shares x or y along the rows and cols as specified. Not fully tested but here's the gist of it:

def share_axes(subplot_array, sharex, sharey, delete_row_ticklabels = 1, delete_col_ticklabels = 1):
shape = np.array(subplot_array).shape
if len(shape) == 1:
for i, ax in enumerate(subplot_array):
if sharex:
ax.get_shared_x_axes().join(ax, subplot_array[0])
if delete_row_ticklabels and not(i==len(subplot_array)-1):
ax.set_xticklabels([])
if sharey:
ax.get_shared_x_axes().join(ax, subplot_array[0])
if delete_col_ticklabels and not(i==0):
ax.set_yticklabels([])
elif len(shape) == 2:
for i in range(shape[0]):
for j in range(shape[1]):
ax = subplot_array[i,j]
if sharex in ('rows', 'both'):
ax.get_shared_x_axes().join(ax, subplot_array[-1,j])
if delete_row_ticklabels and not(i==shape[0]-1):
ax.set_xticklabels([])
if sharey in ('rows', 'both'):
ax.get_shared_y_axes().join(ax, subplot_array[-1,j])
if sharex in ('cols', 'both'):
ax.get_shared_x_axes().join(ax, subplot_array[i,0])
if sharey in ('cols', 'both'):
if delete_col_ticklabels and not(j==0):
ax.set_yticklabels([])
ax.get_shared_y_axes().join(ax, subplot_array[i,0])