如何计算大数模?

如何计算5 ^ 55模221的模,而不需要很多计算器?

我想在密码学的数论中有一些简单的原理来计算这些东西。

159073 次浏览

Okay, so you want to calculate a^b mod m. First we'll take a naive approach and then see how we can refine it.

First, reduce a mod m. That means, find a number a1 so that 0 <= a1 < m and a = a1 mod m. Then repeatedly in a loop multiply by a1 and reduce again mod m. Thus, in pseudocode:

a1 = a reduced mod m
p = 1
for(int i = 1; i <= b; i++) {
p *= a1
p = p reduced mod m
}

By doing this, we avoid numbers larger than m^2. This is the key. The reason we avoid numbers larger than m^2 is because at every step 0 <= p < m and 0 <= a1 < m.

As an example, let's compute 5^55 mod 221. First, 5 is already reduced mod 221.

  1. 1 * 5 = 5 mod 221
  2. 5 * 5 = 25 mod 221
  3. 25 * 5 = 125 mod 221
  4. 125 * 5 = 183 mod 221
  5. 183 * 5 = 31 mod 221
  6. 31 * 5 = 155 mod 221
  7. 155 * 5 = 112 mod 221
  8. 112 * 5 = 118 mod 221
  9. 118 * 5 = 148 mod 221
  10. 148 * 5 = 77 mod 221
  11. 77 * 5 = 164 mod 221
  12. 164 * 5 = 157 mod 221
  13. 157 * 5 = 122 mod 221
  14. 122 * 5 = 168 mod 221
  15. 168 * 5 = 177 mod 221
  16. 177 * 5 = 1 mod 221
  17. 1 * 5 = 5 mod 221
  18. 5 * 5 = 25 mod 221
  19. 25 * 5 = 125 mod 221
  20. 125 * 5 = 183 mod 221
  21. 183 * 5 = 31 mod 221
  22. 31 * 5 = 155 mod 221
  23. 155 * 5 = 112 mod 221
  24. 112 * 5 = 118 mod 221
  25. 118 * 5 = 148 mod 221
  26. 148 * 5 = 77 mod 221
  27. 77 * 5 = 164 mod 221
  28. 164 * 5 = 157 mod 221
  29. 157 * 5 = 122 mod 221
  30. 122 * 5 = 168 mod 221
  31. 168 * 5 = 177 mod 221
  32. 177 * 5 = 1 mod 221
  33. 1 * 5 = 5 mod 221
  34. 5 * 5 = 25 mod 221
  35. 25 * 5 = 125 mod 221
  36. 125 * 5 = 183 mod 221
  37. 183 * 5 = 31 mod 221
  38. 31 * 5 = 155 mod 221
  39. 155 * 5 = 112 mod 221
  40. 112 * 5 = 118 mod 221
  41. 118 * 5 = 148 mod 221
  42. 148 * 5 = 77 mod 221
  43. 77 * 5 = 164 mod 221
  44. 164 * 5 = 157 mod 221
  45. 157 * 5 = 122 mod 221
  46. 122 * 5 = 168 mod 221
  47. 168 * 5 = 177 mod 221
  48. 177 * 5 = 1 mod 221
  49. 1 * 5 = 5 mod 221
  50. 5 * 5 = 25 mod 221
  51. 25 * 5 = 125 mod 221
  52. 125 * 5 = 183 mod 221
  53. 183 * 5 = 31 mod 221
  54. 31 * 5 = 155 mod 221
  55. 155 * 5 = 112 mod 221

Therefore, 5^55 = 112 mod 221.

Now, we can improve this by using exponentiation by squaring; this is the famous trick wherein we reduce exponentiation to requiring only log b multiplications instead of b. Note that with the algorithm that I described above, the exponentiation by squaring improvement, you end up with the right-to-left binary method.

a1 = a reduced mod m
p = 1
while (b > 0) {
if (b is odd) {
p *= a1
p = p reduced mod m
}
b /= 2
a1 = (a1 * a1) reduced mod m
}

Thus, since 55 = 110111 in binary

  1. 1 * (5^1 mod 221) = 5 mod 221
  2. 5 * (5^2 mod 221) = 125 mod 221
  3. 125 * (5^4 mod 221) = 112 mod 221
  4. 112 * (5^16 mod 221) = 112 mod 221
  5. 112 * (5^32 mod 221) = 112 mod 221

Therefore the answer is 5^55 = 112 mod 221. The reason this works is because

55 = 1 + 2 + 4 + 16 + 32

so that

5^55 = 5^(1 + 2 + 4 + 16 + 32) mod 221
= 5^1 * 5^2 * 5^4 * 5^16 * 5^32 mod 221
= 5 * 25 * 183 * 1 * 1 mod 221
= 22875 mod 221
= 112 mod 221

In the step where we calculate 5^1 mod 221, 5^2 mod 221, etc. we note that 5^(2^k) = 5^(2^(k-1)) * 5^(2^(k-1)) because 2^k = 2^(k-1) + 2^(k-1) so that we can first compute 5^1 and reduce mod 221, then square this and reduce mod 221 to obtain 5^2 mod 221, etc.

The above algorithm formalizes this idea.

Chinese Remainder Theorem comes to mind as an initial point as 221 = 13 * 17. So, break this down into 2 parts that get combined in the end, one for mod 13 and one for mod 17. Second, I believe there is some proof of a^(p-1) = 1 mod p for all non zero a which also helps reduce your problem as 5^55 becomes 5^3 for the mod 13 case as 13*4=52. If you look under the subject of "Finite Fields" you may find some good results on how to solve this.

EDIT: The reason I mention the factors is that this creates a way to factor zero into non-zero elements as if you tried something like 13^2 * 17^4 mod 221, the answer is zero since 13*17=221. A lot of large numbers aren't going to be prime, though there are ways to find large primes as they are used a lot in cryptography and other areas within Mathematics.

What you're looking for is modular exponentiation, specifically modular binary exponentiation. This wikipedia link has pseudocode.

To add to Jason's answer:

You can speed the process up (which might be helpful for very large exponents) using the binary expansion of the exponent. First calculate 5, 5^2, 5^4, 5^8 mod 221 - you do this by repeated squaring:

 5^1 = 5(mod 221)
5^2 = 5^2 (mod 221) = 25(mod 221)
5^4 = (5^2)^2 = 25^2(mod 221) = 625 (mod 221) = 183(mod221)
5^8 = (5^4)^2 = 183^2(mod 221) = 33489 (mod 221) = 118(mod 221)
5^16 = (5^8)^2 = 118^2(mod 221) = 13924 (mod 221) = 1(mod 221)
5^32 = (5^16)^2 = 1^2(mod 221) = 1(mod 221)

Now we can write

55 = 1 + 2 + 4 + 16 + 32


so 5^55 = 5^1 * 5^2 * 5^4 * 5^16 * 5^32
= 5   * 25  * 625 * 1    * 1 (mod 221)
= 125 * 625 (mod 221)
= 125 * 183 (mod 183) - because 625 = 183 (mod 221)
= 22875 ( mod 221)
= 112 (mod 221)

You can see how for very large exponents this will be much faster (I believe it's log as opposed to linear in b, but not certain.)

This is part of code I made for IBAN validation. Feel free to use.

    static void Main(string[] args)
{
int modulo = 97;
string input = Reverse("100020778788920323232343433");
int result = 0;
int lastRowValue = 1;


for (int i = 0; i < input.Length; i++)
{
// Calculating the modulus of a large number Wikipedia http://en.wikipedia.org/wiki/International_Bank_Account_Number
if (i > 0)
{
lastRowValue = ModuloByDigits(lastRowValue, modulo);
}
result += lastRowValue * int.Parse(input[i].ToString());
}
result = result % modulo;
Console.WriteLine(string.Format("Result: {0}", result));
}


public static int ModuloByDigits(int previousValue, int modulo)
{
// Calculating the modulus of a large number Wikipedia http://en.wikipedia.org/wiki/International_Bank_Account_Number
return ((previousValue * 10) % modulo);
}
public static string Reverse(string input)
{
char[] arr = input.ToCharArray();
Array.Reverse(arr);
return new string(arr);
}
5^55 mod221


= (   5^10         * 5^10         * 5^10         * 5^10          * 5^10          * 5^5) mod221


= ( ( 5^10) mod221 * 5^10         * 5^10         * 5^10          * 5^10          * 5^5) mod221


= (   77           * 5^10         * 5^10         * 5^10          * 5^10          * 5^5) mod221


= ( ( 77           * 5^10) mod221 * 5^10         * 5^10          * 5^10          * 5^5) mod221


= (   183                         * 5^10         * 5^10          * 5^10          * 5^5) mod221


= ( ( 183                         * 5^10) mod221 * 5^10          * 5^10          * 5^5) mod221


= (   168                                        * 5^10          * 5^10          * 5^5) mod221


= ( ( 168                                        * 5^10) mod 221 * 5^10          * 5^5) mod221


= (   118                                                        * 5^10          * 5^5) mod221


= ( ( 118                                                        * 5^10) mod 221 * 5^5) mod221


= (   25                                                                         * 5^5) mod221


=     112
/* The algorithm is from the book "Discrete Mathematics and Its
Applications 5th Edition" by Kenneth H. Rosen.
(base^exp)%mod
*/


int modular(int base, unsigned int exp, unsigned int mod)
{
int x = 1;
int power = base % mod;


for (int i = 0; i < sizeof(int) * 8; i++) {
int least_sig_bit = 0x00000001 & (exp >> i);
if (least_sig_bit)
x = (x * power) % mod;
power = (power * power) % mod;
}


return x;
}

Just provide another implementation of Jason's answer by C.

After discussing with my classmates, based on Jason's explanation, I like the recursive version more if you don't care about the performance very much:

For example:

#include<stdio.h>


int mypow( int base, int pow, int mod ){
if( pow == 0 ) return 1;
if( pow % 2 == 0 ){
int tmp = mypow( base, pow >> 1, mod );
return tmp * tmp % mod;
}
else{
return base * mypow( base, pow - 1, mod ) % mod;
}
}


int main(){
printf("%d", mypow(5,55,221));
return 0;
}

Jason's answer in Java (note i < exp).

private static void testModulus() {
int bse = 5, exp = 55, mod = 221;


int a1 = bse % mod;
int p = 1;


System.out.println("1. " + (p % mod) + " * " + bse + " = " + (p % mod) * bse + " mod " + mod);


for (int i = 1; i < exp; i++) {
p *= a1;
System.out.println((i + 1) + ". " + (p % mod) + " * " + bse + " = " + ((p % mod) * bse) % mod + " mod " + mod);
p = (p % mod);
}


}

This is called modular exponentiation(https://en.wikipedia.org/wiki/Modular_exponentiation).

Let's assume you have the following expression:

19 ^ 3 mod 7

Instead of powering 19 directly you can do the following:

(((19 mod 7) * 19) mod 7) * 19) mod 7

But this can take also a long time due to a lot of sequential multipliations and so you can multiply on squared values:

x mod N -> x ^ 2 mod N -> x ^ 4 mod -> ... x ^ 2 |log y| mod N

Modular exponentiation algorithm makes assumptions that:

x ^ y == (x ^ |y/2|) ^ 2 if y is even
x ^ y == x * ((x ^ |y/2|) ^ 2) if y is odd

And so recursive modular exponentiation algorithm will look like this in java:

/**
* Modular exponentiation algorithm
* @param x Assumption: x >= 0
* @param y Assumption: y >= 0
* @param N Assumption: N > 0
* @return x ^ y mod N
*/
public static long modExp(long x, long y, long N) {
if(y == 0)
return 1 % N;


long z = modExp(x, Math.abs(y/2), N);


if(y % 2 == 0)
return (long) ((Math.pow(z, 2)) % N);
return (long) ((x * Math.pow(z, 2)) % N);
}

Special thanks to @chux for found mistake with incorrect return value in case of y and 0 comparison.