David Segond的答案几乎是标准的一般答案,Richard T的是最常见的优化,尽管还有一些其他的。其他强优化基于不太通用的解决方案。例如,如果你要检查带有许多点的同一个多边形,对多边形进行三角化可以极大地加快速度,因为有许多非常快速的TIN搜索算法。另一种方法是,如果多边形和点在一个低分辨率的有限平面上,比如屏幕显示,您可以将多边形绘制到内存映射的显示缓冲区上,并检查给定像素的颜色,以查看它是否位于多边形中。
像许多优化一样,这些优化是基于特定情况而不是一般情况,并且基于摊销时间而不是单次使用产生效益。
在这个领域工作,我发现约瑟夫·奥鲁克斯的《计算几何》在C' ISBN 0-521-44034-3是一个很大的帮助。
对于图形,我宁愿不使用整数。许多系统使用整数绘制UI(像素毕竟是整数),但macOS,例如,使用浮点数。macOS只知道点,一个点可以转换为一个像素,但根据显示器分辨率,它可能转换为其他东西。在视网膜屏幕上,半点(0.5/0.5)是像素。不过,我从来没有注意到macOS的ui明显比其他ui慢。毕竟,3D api (OpenGL或Direct3D)也可以使用浮点数,现代图形库经常利用GPU加速。
// p is your point, p.x is the x coord, p.y is the y coord
if (p.x < Xmin || p.x > Xmax || p.y < Ymin || p.y > Ymax) {
// Definitely not within the polygon!
}
// Test the ray against all sides
int intersections = 0;
for (side = 0; side < numberOfSides; side++) {
// Test if current side intersects with ray.
// If yes, intersections++;
}
if ((intersections & 1) == 1) {
// Inside of polygon
} else {
// Outside of polygon
}
到目前为止一切顺利,但是如何检验两个向量是否相交呢?下面是一些C代码(未测试),应该可以做到:
#define NO 0
#define YES 1
#define COLLINEAR 2
int areIntersecting(
float v1x1, float v1y1, float v1x2, float v1y2,
float v2x1, float v2y1, float v2x2, float v2y2
) {
float d1, d2;
float a1, a2, b1, b2, c1, c2;
// Convert vector 1 to a line (line 1) of infinite length.
// We want the line in linear equation standard form: A*x + B*y + C = 0
// See: http://en.wikipedia.org/wiki/Linear_equation
a1 = v1y2 - v1y1;
b1 = v1x1 - v1x2;
c1 = (v1x2 * v1y1) - (v1x1 * v1y2);
// Every point (x,y), that solves the equation above, is on the line,
// every point that does not solve it, is not. The equation will have a
// positive result if it is on one side of the line and a negative one
// if is on the other side of it. We insert (x1,y1) and (x2,y2) of vector
// 2 into the equation above.
d1 = (a1 * v2x1) + (b1 * v2y1) + c1;
d2 = (a1 * v2x2) + (b1 * v2y2) + c1;
// If d1 and d2 both have the same sign, they are both on the same side
// of our line 1 and in that case no intersection is possible. Careful,
// 0 is a special case, that's why we don't test ">=" and "<=",
// but "<" and ">".
if (d1 > 0 && d2 > 0) return NO;
if (d1 < 0 && d2 < 0) return NO;
// The fact that vector 2 intersected the infinite line 1 above doesn't
// mean it also intersects the vector 1. Vector 1 is only a subset of that
// infinite line 1, so it may have intersected that line before the vector
// started or after it ended. To know for sure, we have to repeat the
// the same test the other way round. We start by calculating the
// infinite line 2 in linear equation standard form.
a2 = v2y2 - v2y1;
b2 = v2x1 - v2x2;
c2 = (v2x2 * v2y1) - (v2x1 * v2y2);
// Calculate d1 and d2 again, this time using points of vector 1.
d1 = (a2 * v1x1) + (b2 * v1y1) + c2;
d2 = (a2 * v1x2) + (b2 * v1y2) + c2;
// Again, if both have the same sign (and neither one is 0),
// no intersection is possible.
if (d1 > 0 && d2 > 0) return NO;
if (d1 < 0 && d2 < 0) return NO;
// If we get here, only two possibilities are left. Either the two
// vectors intersect in exactly one point or they are collinear, which
// means they intersect in any number of points from zero to infinite.
if ((a1 * b2) - (a2 * b1) == 0.0f) return COLLINEAR;
// If they are not collinear, they must intersect in exactly one point.
return YES;
}
extension CGPoint {
func isInsidePolygon(vertices: [CGPoint]) -> Bool {
guard !vertices.isEmpty else { return false }
var j = vertices.last!, c = false
for i in vertices {
let a = (i.y > y) != (j.y > y)
let b = (x < (j.x - i.x) * (y - i.y) / (j.y - i.y) + i.x)
if a && b { c = !c }
j = i
}
return c
}
}
Private pXValue As Double
Private pYValue As Double
'''''X Value Property'''''
Public Property Get X() As Double
X = pXValue
End Property
Public Property Let X(Value As Double)
pXValue = Value
End Property
'''''Y Value Property'''''
Public Property Get Y() As Double
Y = pYValue
End Property
Public Property Let Y(Value As Double)
pYValue = Value
End Property
模块:
Public Function isPointInPolygon(p As CPoint, polygon() As CPoint) As Boolean
Dim i As Integer
Dim j As Integer
Dim q As Object
Dim minX As Double
Dim maxX As Double
Dim minY As Double
Dim maxY As Double
minX = polygon(0).X
maxX = polygon(0).X
minY = polygon(0).Y
maxY = polygon(0).Y
For i = 1 To UBound(polygon)
Set q = polygon(i)
minX = vbMin(q.X, minX)
maxX = vbMax(q.X, maxX)
minY = vbMin(q.Y, minY)
maxY = vbMax(q.Y, maxY)
Next i
If p.X < minX Or p.X > maxX Or p.Y < minY Or p.Y > maxY Then
isPointInPolygon = False
Exit Function
End If
' SOURCE: http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
isPointInPolygon = False
i = 0
j = UBound(polygon)
Do While i < UBound(polygon) + 1
If (polygon(i).Y > p.Y) Then
If (polygon(j).Y < p.Y) Then
If p.X < (polygon(j).X - polygon(i).X) * (p.Y - polygon(i).Y) / (polygon(j).Y - polygon(i).Y) + polygon(i).X Then
isPointInPolygon = True
Exit Function
End If
End If
ElseIf (polygon(i).Y < p.Y) Then
If (polygon(j).Y > p.Y) Then
If p.X < (polygon(j).X - polygon(i).X) * (p.Y - polygon(i).Y) / (polygon(j).Y - polygon(i).Y) + polygon(i).X Then
isPointInPolygon = True
Exit Function
End If
End If
End If
j = i
i = i + 1
Loop
End Function
Function vbMax(n1, n2) As Double
vbMax = IIf(n1 > n2, n1, n2)
End Function
Function vbMin(n1, n2) As Double
vbMin = IIf(n1 > n2, n2, n1)
End Function
Sub TestPointInPolygon()
Dim i As Integer
Dim InPolygon As Boolean
' MARKER Object
Dim p As CPoint
Set p = New CPoint
p.X = <ENTER X VALUE HERE>
p.Y = <ENTER Y VALUE HERE>
' POLYGON OBJECT
Dim polygon() As CPoint
ReDim polygon(<ENTER VALUE HERE>) 'Amount of vertices in polygon - 1
For i = 0 To <ENTER VALUE HERE> 'Same value as above
Set polygon(i) = New CPoint
polygon(i).X = <ASSIGN X VALUE HERE> 'Source a list of values that can be looped through
polgyon(i).Y = <ASSIGN Y VALUE HERE> 'Source a list of values that can be looped through
Next i
InPolygon = isPointInPolygon(p, polygon)
MsgBox InPolygon
End Sub
def polygon_ray_casting(self, bounding_points, bounding_box_positions):
# Arrays containing the x- and y-coordinates of the polygon's vertices.
vertx = [point[0] for point in bounding_points]
verty = [point[1] for point in bounding_points]
# Number of vertices in the polygon
nvert = len(bounding_points)
# Points that are inside
points_inside = []
# For every candidate position within the bounding box
for idx, pos in enumerate(bounding_box_positions):
testx, testy = (pos[0], pos[1])
c = 0
for i in range(0, nvert):
j = i - 1 if i != 0 else nvert - 1
if( ((verty[i] > testy ) != (verty[j] > testy)) and
(testx < (vertx[j] - vertx[i]) * (testy - verty[i]) / (verty[j] - verty[i]) + vertx[i]) ):
c += 1
# If odd, that means that we are inside the polygon
if c % 2 == 1:
points_inside.append(pos)
return points_inside
function pnpoly(area, test)
local inside = false
local tx, ty = table.unpack(test)
local j = #area
for i=1, #area do
local vxi, vyi = table.unpack(area[i])
local vxj, vyj = table.unpack(area[j])
if (vyi > ty) ~= (vyj > ty)
and tx < (vxj - vxi)*(ty - vyi)/(vyj - vyi) + vxi
then
inside = not inside
end
j = i
end
return inside
end
/** Get relationship between a point and a polygon using ray-casting algorithm
* @param \{\{x:number, y:number}} P: point to check
* @param \{\{x:number, y:number}[]} polygon: the polygon
* @returns -1: outside, 0: on edge, 1: inside
*/
function relationPP(P, polygon) {
const between = (p, a, b) => p >= a && p <= b || p <= a && p >= b
let inside = false
for (let i = polygon.length-1, j = 0; j < polygon.length; i = j, j++) {
const A = polygon[i]
const B = polygon[j]
// corner cases
if (P.x == A.x && P.y == A.y || P.x == B.x && P.y == B.y) return 0
if (A.y == B.y && P.y == A.y && between(P.x, A.x, B.x)) return 0
if (between(P.y, A.y, B.y)) { // if P inside the vertical range
// filter out "ray pass vertex" problem by treating the line a little lower
if (P.y == A.y && B.y >= A.y || P.y == B.y && A.y >= B.y) continue
// calc cross product `PA X PB`, P lays on left side of AB if c > 0
const c = (A.x - P.x) * (B.y - P.y) - (B.x - P.x) * (A.y - P.y)
if (c == 0) return 0
if ((A.y < B.y) == (c > 0)) inside = !inside
}
}
return inside? 1 : -1
}
from typing import Iterable
def pnpoly(verts, x, y):
#check if x and/or y is iterable
xit, yit = isinstance(x, Iterable), isinstance(y, Iterable)
#if not iterable, make an iterable of length 1
X = x if xit else (x, )
Y = y if yit else (y, )
#store verts length as a range to juggle j
r = range(len(verts))
#final results if x or y is iterable
results = []
#traverse x and y coordinates
for xp in X:
for yp in Y:
c = 0 #reset c at every new position
for i in r:
j = r[i-1] #set j to position before i
#store a few arguments to shorten the if statement
yneq = (verts[i][1] > yp) != (verts[j][1] > yp)
xofs, yofs = (verts[j][0] - verts[i][0]), (verts[j][1] - verts[i][1])
#if we have crossed a line, increment c
if (yneq and (xp < xofs * (yp - verts[i][1]) / yofs + verts[i][0])):
c += 1
#if c is odd store the coordinates
if c%2:
results.append((xp, yp))
#return either coordinates or a bool, depending if x or y was an iterable
return results if (xit or yit) else bool(c%2)