You can also retrieve the list of columns and then select from that list
collist = df.columns.tolist()
# you can now select from this list any arbritrary range
df1 = df[collist[0:1]]
# or remove a column
collist.remove('col2')
# now select
df1 = df[collist]
# df1 will now only have 'col1' and 'col3'
import numpy as np
columns = df.columns
mask = np.ones(columns.shape, dtype=bool)
i = 4 #The specified column that you don't want to show
mask[i] = 0
df[columns[mask]]