熊猫数据帧得到每组的第一行

我有一个熊猫DataFrame像以下:

df = pd.DataFrame({'id' : [1,1,1,2,2,3,3,3,3,4,4,5,6,6,6,7,7],
'value'  : ["first","second","second","first",
"second","first","third","fourth",
"fifth","second","fifth","first",
"first","second","third","fourth","fifth"]})

我想通过["id","value"]将其分组,并获得每个组的第一行:

        id   value
0        1   first
1        1  second
2        1  second
3        2   first
4        2  second
5        3   first
6        3   third
7        3  fourth
8        3   fifth
9        4  second
10       4   fifth
11       5   first
12       6   first
13       6  second
14       6   third
15       7  fourth
16       7   fifth

预期结果:

    id   value
1   first
2   first
3   first
4  second
5  first
6  first
7  fourth

我尝试了下面,它只给出DataFrame的第一行。任何关于这方面的帮助都是感激的。

In [25]: for index, row in df.iterrows():
....:     df2 = pd.DataFrame(df.groupby(['id','value']).reset_index().ix[0])
284429 次浏览
>>> df.groupby('id').first()
value
id
1    first
2    first
3    first
4   second
5    first
6    first
7   fourth

如果你需要id作为列:

>>> df.groupby('id').first().reset_index()
id   value
0   1   first
1   2   first
2   3   first
3   4  second
4   5   first
5   6   first
6   7  fourth

要获得n条第一条记录,可以使用head():

>>> df.groupby('id').head(2).reset_index(drop=True)
id   value
0    1   first
1    1  second
2    2   first
3    2  second
4    3   first
5    3   third
6    4  second
7    4   fifth
8    5   first
9    6   first
10   6  second
11   7  fourth
12   7   fifth

这将为您提供每个组的第二行(零索引,第n(0)与第一个()相同):

df.groupby('id').nth(1)

文档:http://pandas.pydata.org/pandas-docs/stable/groupby.html#taking-the-nth-row-of-each-group

也许这就是你想要的

import pandas as pd
idx = pd.MultiIndex.from_product([['state1','state2'],   ['county1','county2','county3','county4']])
df = pd.DataFrame({'pop': [12,15,65,42,78,67,55,31]}, index=idx)
                pop
state1 county1   12
county2   15
county3   65
county4   42
state2 county1   78
county2   67
county3   55
county4   31
df.groupby(level=0, group_keys=False).apply(lambda x: x.sort_values('pop', ascending=False)).groupby(level=0).head(3)


> Out[29]:
pop
state1 county3   65
county4   42
county2   15
state2 county1   78
county2   67
county3   55

如果你需要获取第一行,我建议使用.nth(0)而不是.first()

它们之间的区别在于如何处理nan,因此.nth(0)将返回组的第一行,无论这一行的值是什么,而.first()最终将返回每列的第一个 NaN值。

例如,如果你的数据集是:

df = pd.DataFrame({'id' : [1,1,1,2,2,3,3,3,3,4,4],
'value'  : ["first","second","third", np.NaN,
"second","first","second","third",
"fourth","first","second"]})


>>> df.groupby('id').nth(0)
value
id
1    first
2    NaN
3    first
4    first

>>> df.groupby('id').first()
value
id
1    first
2    second
3    first
4    first

如果你只需要每个组的第一行,我们可以使用drop_duplicates,注意函数默认方法keep='first'

df.drop_duplicates('id')
Out[1027]:
id   value
0    1   first
3    2   first
5    3   first
9    4  second
11   5   first
12   6   first
15   7  fourth

考虑到'id'列是数字类型,例如int32/int64,也可以如下所示使用groupby.rank()

[In]: df[df.groupby('value')['id'].rank() == 1]
[Out]:
id   value
0   1   first
6   3   third
7   3  fourth
8   3   fifth

如果要重置索引,只需传递.reset_index(),例如

[In]: df[df.groupby('value')['id'].rank() == 1].reset_index()
[Out]:
index  id   value
0      0   1   first
1      6   3   third
2      7   3  fourth
3      8   3   fifth

如果不需要indexid

[In]: df.drop(['index', 'id'], axis=1, inplace=True)
[Out]:
value
0   first
1   third
2  fourth
3   fifth

我想“首先”;意味着你已经按照你想要的对你的数据帧进行了排序。

我所做的是:

< p > df.groupby (id) .agg(“第一次”) 我想“首先”;意味着你已经按照你想要的对你的数据帧进行了排序。 我所做的是:

df.groupby('id').agg('first')
value
id
1    first
2    first
3    first
4   second
5    first
6    first
7   fourth

好处是你可以插入任何你想要的函数:

df.groupby('id').agg(['first','last','count']))
value
first    last count
id
1    first  second     3
2    first  second     2
3    first   fifth     4
4   second   fifth     2
5    first   first     1
6    first   third     3
7   fourth   fifth     2

输出数据帧有MultiIndex列

MultiIndex([('value', 'first'),
('value',  'last'),
('value', 'count')],
)

你可以使用方法take,它接受元素的索引列表来选择:

df.groupby('id').take([0])